Suppr超能文献

线性回归中水平集的置信集。

Confidence sets for a level set in linear regression.

机构信息

Department of Mathematics and Statistics, Lancaster University, Bilrigg lane, Lancaster, LA1 4YF, UK.

School of Mathematical Sciences, University of Southampton, Southampton, UK.

出版信息

Stat Med. 2024 Mar 15;43(6):1103-1118. doi: 10.1002/sim.9996. Epub 2024 Jan 6.

Abstract

Regression modeling is the workhorse of statistics and there is a vast literature on estimation of the regression function. It has been realized in recent years that in regression analysis the ultimate aim may be the estimation of a level set of the regression function, ie, the set of covariate values for which the regression function exceeds a predefined level, instead of the estimation of the regression function itself. The published work on estimation of the level set has thus far focused mainly on nonparametric regression, especially on point estimation. In this article, the construction of confidence sets for the level set of linear regression is considered. In particular, level upper, lower and two-sided confidence sets are constructed for the normal-error linear regression. It is shown that these confidence sets can be easily constructed from the corresponding level simultaneous confidence bands. It is also pointed out that the construction method is readily applicable to other parametric regression models where the mean response depends on a linear predictor through a monotonic link function, which include generalized linear models, linear mixed models and generalized linear mixed models. Therefore, the method proposed in this article is widely applicable. Simulation studies with both linear and generalized linear models are conducted to assess the method and real examples are used to illustrate the method.

摘要

回归建模是统计学的主要工具,关于回归函数估计的文献非常丰富。近年来,人们已经意识到,在回归分析中,最终目的可能是估计回归函数的一个水平集,即回归函数超过预定义水平的协变量值的集合,而不是估计回归函数本身。因此,关于水平集估计的已发表工作主要集中在非参数回归上,特别是在点估计上。本文考虑了线性回归水平集的置信集的构建。特别地,构建了正态误差线性回归的水平上、下限和双边置信集。结果表明,这些置信集可以从相应的水平同时置信带中轻松构建。还指出,该构建方法易于应用于其他依赖于通过单调链接函数的线性预测器的参数回归模型,包括广义线性模型、线性混合模型和广义线性混合模型。因此,所提出的方法具有广泛的适用性。通过线性和广义线性模型进行了模拟研究以评估该方法,并使用实际示例来说明该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验