Suppr超能文献

在深度学习分割的红外扫描激光眼底血管造影(IR-SLO)图像上使用可解释人工智能分析多发性硬化症患者的视网膜血管形态。

Analyzing Retinal Vessel Morphology in MS Using Interpretable AI on Deep Learning-Segmented IR-SLO Images.

作者信息

Soltanipour Asieh, Arian Roya, Aghababaei Ali, Ashtari Fereshteh, Zhou Yukun, Keane Pearse A, Kafieh Raheleh

机构信息

Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan 817467346, Iran.

Department of Engineering, Durham University, South Road, Durham DH1 3LE, UK.

出版信息

Bioengineering (Basel). 2025 Aug 6;12(8):847. doi: 10.3390/bioengineering12080847.

Abstract

Multiple sclerosis (MS), a chronic disease of the central nervous system, is known to cause structural and vascular changes in the retina. Although optical coherence tomography (OCT) and fundus photography can detect retinal thinning and circulatory abnormalities, these findings are not specific to MS. This study explores the potential of Infrared Scanning-Laser-Ophthalmoscopy (IR-SLO) imaging to uncover vascular morphological features that may serve as MS-specific biomarkers. Using an age-matched, subject-wise stratified k-fold cross-validation approach, a deep learning model originally designed for color fundus images was adapted to segment optic disc, optic cup, and retinal vessels in IR-SLO images, achieving Dice coefficients of 91%, 94.5%, and 97%, respectively. This process included tailored pre- and post-processing steps to optimize segmentation accuracy. Subsequently, clinically relevant features were extracted. Statistical analyses followed by SHapley Additive exPlanations (SHAP) identified vessel fractal dimension, vessel density in zones B and C (circular regions extending 0.5-1 and 0.5-2 optic disc diameters from the optic disc margin, respectively), along with vessel intensity and width, as key differentiators between MS patients and healthy controls. These findings suggest that IR-SLO can non-invasively detect retinal vascular biomarkers that may serve as additional or alternative diagnostic markers for MS diagnosis, complementing current invasive procedures.

摘要

多发性硬化症(MS)是一种中枢神经系统的慢性疾病,已知会导致视网膜的结构和血管变化。尽管光学相干断层扫描(OCT)和眼底摄影可以检测到视网膜变薄和循环异常,但这些发现并非MS所特有。本研究探讨了红外扫描激光检眼镜(IR-SLO)成像揭示可能作为MS特异性生物标志物的血管形态特征的潜力。使用年龄匹配、按受试者分层的k折交叉验证方法,将最初为彩色眼底图像设计的深度学习模型进行调整,以分割IR-SLO图像中的视盘、视杯和视网膜血管,Dice系数分别达到91%、94.5%和97%。这一过程包括定制的预处理和后处理步骤,以优化分割精度。随后,提取临床相关特征。通过统计分析和SHapley加性解释(SHAP),确定血管分形维数、B区和C区(分别从视盘边缘延伸0.5-1和0.5-2个视盘直径的圆形区域)的血管密度,以及血管强度和宽度,是MS患者与健康对照之间的关键区分因素。这些发现表明,IR-SLO可以无创检测视网膜血管生物标志物,这些标志物可作为MS诊断的额外或替代诊断标志物,补充当前的侵入性检查方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8338/12384046/ac17ce816db8/bioengineering-12-00847-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验