Suppr超能文献

Study on the thermal effect of coal oxidation under different stresses.

作者信息

Chao Jiangkun, Liu Shuang, Pan Rongkun, Yuan YingFeng, Hu Daimin

机构信息

School of Safety & Science Engineering, Henan Polytechnic University, Jiaozuo 454003, China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Henan Polytechnic University, China.

School of Safety & Science Engineering, Henan Polytechnic University, Jiaozuo 454003, China.

出版信息

Sci Total Environ. 2024 Mar 10;915:169843. doi: 10.1016/j.scitotenv.2023.169843. Epub 2024 Jan 5.

Abstract

The utilization of coal resources has been improved by using the method of narrow coal pillar mining, but this leads to a stress concentration in the coal pillars, which causes differences in the oxidation of coal pillars. To study the effect of stress on the oxidation and spontaneous combustion of coal samples, programmed heating-gas chromatography coupling experiments were carried out on coal samples under different stresses, analyzing the effect rule of stress on the gas derivatives of coal samples in the process of heating and oxidation. Furthermore, the mechanism of stress influence on thermal effect parameters is explored on the basis of that analysis. The results show that the rate of oxygen consumption, CO, CO concentration and heat release intensity of coal samples show a changing trend, initially increasing and then decreasing with increasing stress, and these values within coal are at the maximum when the stress is 9 MPa; and with increasing stress, the activation energy shows a "V" type change and reaches the minimum of 26.89 kJ/mol at 6 MPa, which indicates that low stress promotes coal spontaneous combustion (CSC), while high stress inhibits CSC. The thermal conduction coefficient of coal samples shows a negative correlation with temperature at the low-temperature stage, while the thermal conductivity of coal samples shows a positive correlation with temperature at the high-temperature stage, and the thermal conduction coefficient of coal samples reaches a minimum at temperatures of 70 °C and 0 MPa of stress. The porosity within coal decreases, and the thermal conductivity coefficient within coal increases with increasing stress because the increase in stress makes the macromolecules within coal disassemble into small molecules, the structure becomes more compact, and the thermal conductivity increases. The study provides an important theoretical basis for better understanding the effect mechanism of stress on CSC.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验