Suppr超能文献

用于通过心肌血流正电子发射断层扫描成像准确检测缺血和瘢痕的机器学习与深度学习模型。

Machine and deep learning models for accurate detection of ischemia and scar with myocardial blood flow positron emission tomography imaging.

作者信息

Berman Daniel, Hunter Chad, Hossain Alomgir, Yao Jason, Workman Emily, Guan Steven, Strickhart Laura, Beanlands Rob, Slater David, deKemp Robert A

机构信息

The MITRE Corporation, 7515 Colshire Drive, McLean, VA 22102, USA.

University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, K1Y 4W7, Canada.

出版信息

J Nucl Cardiol. 2024 Feb;32:101797. doi: 10.1016/j.nuclcard.2024.101797. Epub 2024 Jan 5.

Abstract

BACKGROUND

Quantification of myocardial blood flow (MBF) is used for the noninvasive diagnosis of patients with coronary artery disease (CAD). This study compared traditional statistics, machine learning, and deep learning techniques in their ability to diagnose disease using only the rest and stress MBF values.

METHODS

This study included 3245 rest and stress rubidium-82 positron emission tomography (PET) studies and matching diagnostic labels from perfusion reports. Standard logistic regression, lasso logistic regression, support vector machine, random forest, multilayer perceptron, and dense U-Net were compared for per-patient detection and per-vessel localization of scars and ischemia.

RESULTS

Receiver-operator characteristic area under the curve (AUC) of machine learning models was significantly higher than those of traditional statistics models for per-patient detection of disease (0.92-0.95 vs. 0.87) but not for per-vessel localization of ischemia or scar. Random forest showed the highest AUC = 0.95 among the different models compared. On the final hold-out set for generalizability, random forest showed an AUC of 0.92 for detection and 0.89 for localization of perfusion abnormalities.

CONCLUSIONS

For per-vessel localization, simple models trained on segmental data performed similarly to a convolutional neural network trained on polar-map data, highlighting the need to justify the use of complex predictive algorithms through comparison with simpler methods.

摘要

背景

心肌血流量(MBF)的量化用于冠状动脉疾病(CAD)患者的无创诊断。本研究比较了传统统计学、机器学习和深度学习技术仅使用静息和负荷MBF值诊断疾病的能力。

方法

本研究纳入了3245例静息和负荷铷-82正电子发射断层扫描(PET)研究以及来自灌注报告的匹配诊断标签。比较了标准逻辑回归、套索逻辑回归、支持向量机、随机森林、多层感知器和密集U-Net在患者层面检测瘢痕和缺血以及血管层面定位瘢痕和缺血的能力。

结果

对于患者层面的疾病检测,机器学习模型的受试者操作特征曲线下面积(AUC)显著高于传统统计学模型(0.92 - 0.95对0.87),但在血管层面定位缺血或瘢痕方面并非如此。在比较的不同模型中,随机森林的AUC最高,为0.95。在用于评估泛化能力的最终保留数据集上,随机森林检测灌注异常的AUC为0.92,定位灌注异常的AUC为0.89。

结论

对于血管层面定位,基于节段数据训练的简单模型与基于极坐标图数据训练的卷积神经网络表现相似,这突出了通过与更简单方法比较来证明使用复杂预测算法合理性的必要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验