Suppr超能文献

利用 CRISPR 干扰技术高效快速地灭活 。

Use of CRISPR interference for efficient and rapid gene inactivation in .

机构信息

Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA.

出版信息

Appl Environ Microbiol. 2024 Feb 21;90(2):e0166523. doi: 10.1128/aem.01665-23. Epub 2024 Jan 8.

Abstract

Gene inactivation by creating in-frame deletion mutations in is time consuming, and most fusobacterial strains are genetically intractable. Addressing these problems, we introduced a riboswitch-based inducible CRISPR interference (CRISPRi) system. This system employs the nuclease-inactive Cas9 protein (dCas9), specifically guided to the gene of interest by a constantly expressed single-guide RNA (sgRNA). Mechanistically, this dCas9-sgRNA complex serves as an insurmountable roadblock for RNA polymerase, thus repressing the target gene transcription. Leveraging this system, we first examined two non-essential genes, and , which are pivotal for fusobacterial cytokinesis and coaggregation. Upon adding the inducer, theophylline, suppression caused filamentous cell formation akin to chromosomal deletion, while targeting significantly reduced RadD protein levels, abolishing RadD-mediated coaggregation. The system was then extended to probe essential genes and , which are vital for outer membrane biogenesis and cell division. Impressively, suppression disrupted membrane integrity and bacterial separation, stalling growth, while targeting yielded elongated cells in broth with compromised agar growth. Further studies on clinical strain CTI-2 and revealed reduced indole synthesis when targeting . Moreover, silencing in decreased ClpB, increasing thermal sensitivity. In summary, our CRISPRi system streamlines gene inactivation across various fusobacterial strains.IMPORTANCEHow can we effectively investigate the gene functions in , given the dual challenges of gene inactivation and the inherent genetic resistance of many strains? Traditional methods have been cumbersome and often inadequate. Addressing this, our work introduces a novel inducible CRISPR interference (CRISPRi) system in which dCas9 expression is controlled at the translation level by a theophylline-responsive riboswitch unit, and single-guide RNA expression is driven by the robust, constitutive promoter. This approach simplifies gene inactivation in the model organism (ATCC 23726) and extends its application to previously considered genetically intractable strains like CTI-2 and . With CRISPRi's potential, it is a pivotal tool for in-depth genetic studies into fusobacterial pathogenesis, potentially unlocking targeted therapeutic strategies.

摘要

通过在 中创建框内缺失突变来使基因失活既耗时又费力,而且大多数梭菌菌株的遗传特性难以处理。为了解决这些问题,我们引入了一种基于核酶的诱导型 CRISPR 干扰(CRISPRi)系统。该系统利用无核酸酶活性的 Cas9 蛋白(dCas9),由持续表达的单指导 RNA(sgRNA)特异性靶向感兴趣的基因。从机制上讲,这种 dCas9-sgRNA 复合物充当 RNA 聚合酶不可逾越的障碍,从而抑制靶基因转录。利用该系统,我们首先检查了两个非必需基因 和 ,它们对梭菌细胞分裂和共聚至关重要。加入诱导剂茶碱后,抑制导致丝状细胞形成类似于染色体缺失,而靶向 显著降低 RadD 蛋白水平,从而消除 RadD 介导的共聚。该系统随后扩展到探测必需基因 和 ,它们对外膜生物发生和细胞分裂至关重要。令人印象深刻的是,抑制 会破坏膜完整性和细菌分离,阻止生长,而靶向 会导致在肉汤中产生伸长的细胞,琼脂生长受损。进一步研究 CTI-2 和 临床株发现,靶向 时吲哚合成减少。此外,沉默 会减少 ClpB,增加热敏感性。总之,我们的 CRISPRi 系统简化了各种梭菌菌株的基因失活。

重要性

鉴于许多菌株的基因失活和固有遗传抗性的双重挑战,我们如何才能有效地研究 中的基因功能?传统方法既繁琐又常常不够充分。为了解决这个问题,我们的工作在模型生物(ATCC 23726)中引入了一种新型的诱导型 CRISPR 干扰(CRISPRi)系统,其中 dCas9 的表达通过茶碱响应的核酶单元在翻译水平上进行控制,而单指导 RNA 的表达则由强大的、组成型的 启动子驱动。这种方法简化了模型生物(ATCC 23726)中的基因失活,并将其应用扩展到先前认为遗传上难以处理的菌株,如 CTI-2 和 。CRISPRi 的潜力使其成为深入研究梭菌发病机制的关键工具,有可能为靶向治疗策略开辟道路。

相似文献

1
Use of CRISPR interference for efficient and rapid gene inactivation in .
Appl Environ Microbiol. 2024 Feb 21;90(2):e0166523. doi: 10.1128/aem.01665-23. Epub 2024 Jan 8.
2
Use of CRISPR interference for efficient and rapid gene inactivation in .
bioRxiv. 2023 Sep 20:2023.09.19.558491. doi: 10.1101/2023.09.19.558491.
3
HicA Toxin-Based Counterselection Marker for Allelic Exchange Mutations in Fusobacterium nucleatum.
Appl Environ Microbiol. 2023 Apr 26;89(4):e0009123. doi: 10.1128/aem.00091-23. Epub 2023 Apr 11.
4
Development of a xylose-inducible promoter and riboswitch combination system for manipulating gene expression in .
Appl Environ Microbiol. 2023 Sep 28;89(9):e0066723. doi: 10.1128/aem.00667-23. Epub 2023 Sep 11.
7
Genetic and molecular determinants of polymicrobial interactions in .
Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2006482118.
9
CRISPR/dCas9-Mediated Gene Silencing in Two Plant Fungal Pathogens.
mSphere. 2023 Feb 21;8(1):e0059422. doi: 10.1128/msphere.00594-22. Epub 2023 Jan 19.
10
A New Method for Gene Deletion to Investigate Cell Wall Biogenesis in Fusobacterium nucleatum.
Methods Mol Biol. 2024;2727:69-82. doi: 10.1007/978-1-0716-3491-2_6.

引用本文的文献

1
Conjugation-based genetic manipulation of .
mBio. 2025 Jul 30:e0171425. doi: 10.1128/mbio.01714-25.
2
Establishment and improvement of genetic manipulation tools for .
Eng Microbiol. 2025 Feb 8;5(1):100192. doi: 10.1016/j.engmic.2025.100192. eCollection 2025 Mar.
4
Inactivation of the Rnf complex reduces FadA-mediated amyloid formation and tumor development.
mBio. 2025 Jun 11;16(6):e0103225. doi: 10.1128/mbio.01032-25. Epub 2025 May 22.
5
The CarSR two-component system directly controls expression as a global regulator that senses bacterial coaggregation in .
J Bacteriol. 2025 Jun 24;207(6):e0052924. doi: 10.1128/jb.00529-24. Epub 2025 May 21.
6
An antisense oligomer conjugate with unpredicted bactericidal activity against .
mBio. 2025 Jun 11;16(6):e0052425. doi: 10.1128/mbio.00524-25. Epub 2025 Apr 29.
7
Development of a conditional plasmid for gene deletion in non-model strains.
Appl Environ Microbiol. 2025 Feb 19;91(2):e0181624. doi: 10.1128/aem.01816-24. Epub 2025 Jan 24.
8
Reexamining the role of subspecies in clinical and experimental studies.
Gut Microbes. 2024 Jan-Dec;16(1):2415490. doi: 10.1080/19490976.2024.2415490. Epub 2024 Oct 12.

本文引用的文献

1
Development of a xylose-inducible promoter and riboswitch combination system for manipulating gene expression in .
Appl Environ Microbiol. 2023 Sep 28;89(9):e0066723. doi: 10.1128/aem.00667-23. Epub 2023 Sep 11.
2
Insights into the assembly and regulation of the bacterial divisome.
Nat Rev Microbiol. 2024 Jan;22(1):33-45. doi: 10.1038/s41579-023-00942-x. Epub 2023 Jul 31.
4
HicA Toxin-Based Counterselection Marker for Allelic Exchange Mutations in Fusobacterium nucleatum.
Appl Environ Microbiol. 2023 Apr 26;89(4):e0009123. doi: 10.1128/aem.00091-23. Epub 2023 Apr 11.
5
Enhanced Fusobacterium nucleatum Genetics Using Host DNA Methyltransferases To Bypass Restriction-Modification Systems.
J Bacteriol. 2022 Dec 20;204(12):e0027922. doi: 10.1128/jb.00279-22. Epub 2022 Nov 3.
6
Comparative Genomic Analysis of Fusobacterium necrophorum Provides Insights into Conserved Virulence Genes.
Microbiol Spectr. 2022 Dec 21;10(6):e0029722. doi: 10.1128/spectrum.00297-22. Epub 2022 Oct 7.
7
Expanding the genetic toolkit helps dissect a global stress response in the early-branching species .
Proc Natl Acad Sci U S A. 2022 Oct 4;119(40):e2201460119. doi: 10.1073/pnas.2201460119. Epub 2022 Sep 26.
8
Subspecies Differ in Biofilm Forming Ability .
Front Oral Health. 2022 Mar 15;3:853618. doi: 10.3389/froh.2022.853618. eCollection 2022.
9
Presence of Specific Periodontal Pathogens in Prostate Gland Diagnosed With Chronic Inflammation and Adenocarcinoma.
Cureus. 2021 Sep 5;13(9):e17742. doi: 10.7759/cureus.17742. eCollection 2021 Sep.
10
Genetic and molecular determinants of polymicrobial interactions in .
Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2006482118.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验