Li Yang, Pang Yuncong, Wang Liwei, Li Qiqi, Liu Baoguang, Li Jianmin, Liu Shujuan, Zhao Qiang
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, China.
State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, China.
Adv Mater. 2024 Mar;36(13):e2310973. doi: 10.1002/adma.202310973. Epub 2024 Jan 17.
The conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) offers superior advantages in electronics due to its remarkable combination of high electrical conductivity, excellent biocompatibility, and mechanical flexibility, making it an ideal material among electronic skin, health monitoring, and energy harvesting and storage. Nevertheless, pristine PEDOT:PSS films exhibit limitations in terms of both low conductivity and stretchability; while, conventional processing techniques cannot enhance these properties simultaneously, facing the dilemma that highly conductive interconnected PEDOT:PSS domains are susceptible to tensile strain. Via modifying PEDOT:PSS with ionic liquids (ILs), not only a synergistic enhancement of the electrical and mechanical properties can be achieved but also the requirements for the printable bioelectronic are satisfied. In this comprehensive review, the task of providing a thorough examination of the mechanisms and applications of ILs as modifiers for PEDOT:PSS is undertaken. First, the theoretical mechanisms governing the interactions between ILs and PEDOT:PSS are discussed in detail. Then, the enhanced properties and the elucidation of the underlying mechanisms achieved through the incorporation of ILs are reviewed. Next, specific applications of ILs-modified PEDOT:PSS relevant to bioelectronic devices are presented. Last, there is a concise summary and a discussion regarding the opportunities and challenges in this exciting field.
导电聚合物聚(3,4-乙撑二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)因其高导电性、优异的生物相容性和机械柔韧性的显著结合,在电子学领域具有卓越优势,使其成为电子皮肤、健康监测以及能量收集与存储方面的理想材料。然而,原始的PEDOT:PSS薄膜在导电性和拉伸性方面都存在局限性;同时,传统加工技术无法同时提高这些性能,面临着高导电性相互连接的PEDOT:PSS域易受拉伸应变影响的困境。通过用离子液体(ILs)对PEDOT:PSS进行改性,不仅可以实现电学和力学性能的协同增强,还能满足可印刷生物电子学的要求。在这篇全面综述中,承担了对离子液体作为PEDOT:PSS改性剂的作用机制和应用进行全面考察的任务。首先,详细讨论了离子液体与PEDOT:PSS之间相互作用的理论机制。然后,综述了通过引入离子液体实现的增强性能以及对潜在机制的阐释。接下来,介绍了离子液体改性的PEDOT:PSS在生物电子器件方面的具体应用。最后,对这个令人兴奋的领域中的机遇和挑战进行了简要总结和讨论。
ACS Appl Mater Interfaces. 2019-7-24
ACS Appl Bio Mater. 2020-4-20
ACS Appl Mater Interfaces. 2016-12-27
ACS Appl Mater Interfaces. 2021-5-12
Chem Soc Rev. 2024-10-28
ACS Appl Mater Interfaces. 2019-9-27
ACS Appl Mater Interfaces. 2019-2-15
Nanomicro Lett. 2025-8-8
Natl Sci Rev. 2025-4-4
Microsyst Nanoeng. 2025-5-13
Molecules. 2025-1-4