Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.
Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.
ACS Appl Mater Interfaces. 2021 May 12;13(18):21693-21702. doi: 10.1021/acsami.1c00537. Epub 2021 Apr 29.
A stretchable conductor is one of the key components in soft electronics that allows the seamless integration of electronic devices and sensors on elastic substrates. Its unique advantages of mechanical flexibility and stretchability have enabled a variety of wearable bioelectronic devices that can conformably adapt to curved skin surfaces for long-term health monitoring applications. Here, we report a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-based stretchable polymer blend that can be patterned using an inkjet printing process while exhibiting low sheet resistance and accommodating large mechanical deformations. We have systematically studied the effect of various types of polar solvent additives that can help induce phase separation of PEDOT and PSS grains and change the conformation of a PEDOT chain, thereby improving the electrical property of the film by facilitating charge hopping along the percolating PEDOT network. The optimal ink formulation is achieved by adding 5 wt % ethylene glycol into a pristine PEDOT:PSS aqueous solution, which results in a sheet resistance of as low as 58 Ω/□. Elasticity can also be achieved by blending the above solution with the soft polymer poly(ethylene oxide) (PEO). Thin films of PEDOT:PSS/PEO polymer blends patterned by inkjet printing exhibits a low sheet resistance of 84 Ω/□ and can resist up to 50% tensile strain with minimal changes in electrical performance. With its good conductivity and elasticity, we have further demonstrated the use of the polymer blend as stretchable interconnects and stretchable dry electrodes on a thin polydimethylsiloxane (PDMS) substrate for photoplethysmography (PPG) and electrocardiography (ECG) recording applications. This work shows the potential of using a printed stretchable conducting polymer in low-cost wearable sensor patches for smart health applications.
一种可拉伸导体是软电子产品中的关键组件之一,它允许电子设备和传感器在弹性衬底上无缝集成。它具有机械柔韧性和可拉伸性的独特优势,使各种可穿戴生物电子设备得以实现,这些设备可以顺应地适应弯曲的皮肤表面,用于长期健康监测应用。在这里,我们报告了一种基于聚(3,4-亚乙基二氧噻吩)聚苯乙烯磺酸盐(PEDOT:PSS)的可拉伸聚合物共混物,它可以使用喷墨打印工艺进行图案化,同时表现出低的片电阻和适应大的机械变形。我们系统地研究了各种类型的极性溶剂添加剂的影响,这些添加剂可以帮助诱导 PEDOT 和 PSS 颗粒的相分离并改变 PEDOT 链的构象,从而通过促进沿导电 PEDOT 网络的电荷跳跃来改善薄膜的电性能。通过在原始 PEDOT:PSS 水溶液中添加 5wt%的乙二醇,可以实现最佳的油墨配方,从而得到低至 58Ω/□的片电阻。还可以通过将上述溶液与软聚合物聚氧化乙烯(PEO)混合来实现弹性。通过喷墨打印对 PEDOT:PSS/PEO 聚合物共混物进行图案化的薄膜具有低至 84Ω/□的片电阻,并且可以承受高达 50%的拉伸应变,而电性能的变化最小。由于其良好的导电性和弹性,我们进一步展示了使用聚合物共混物作为可拉伸互连和可拉伸干电极在薄的聚二甲基硅氧烷(PDMS)衬底上用于光体积描记术(PPG)和心电图(ECG)记录应用的情况。这项工作表明了在低成本可穿戴传感器贴片中使用印刷可拉伸导电聚合物的潜力,可用于智能健康应用。