Simmons James R, Estrem Brandon, Zagoskin Maxim V, Oldridge Ryan, Zadegan Sobhan Bahrami, Wang Jianbin
Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA.
UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, 37996, USA.
bioRxiv. 2023 Dec 23:2023.12.21.572835. doi: 10.1101/2023.12.21.572835.
A growing list of metazoans undergo programmed DNA elimination (PDE), where a significant amount of DNA is selectively lost from the somatic genome during development. In some nematodes, PDE leads to the removal and remodeling of the ends of all germline chromosomes. In several species, PDE also generates internal breaks that lead to sequence loss and an increased number of somatic chromosomes. The biological significance of these karyotype changes associated with PDE and the origin and evolution of nematode PDE remain largely unknown. Here, we assembled the single germline chromosome of the horse parasite and compared the karyotypes, chromosomal gene organization, and PDE features among ascarid nematodes. We show that PDE in converts an XX/XY sex-determination system in the germline into an XX/XO system in the somatic cells. Comparisons of , and ascarid chromosomes suggest that PDE existed in the ancestor of these parasites, and their current distinct germline karyotypes were derived from fusion events of smaller ancestral chromosomes. The DNA breaks involved in PDE resolve these fused germline chromosomes into their pre-fusion karyotypes, leading to alterations in genome architecture and gene expression in the somatic cells. Cytological and genomic analyses further suggest that satellite DNA and the heterochromatic chromosome arms play a dynamic role in the germline chromosome during meiosis. Overall, our results show that chromosome fusion and PDE have been harnessed in these ascarids to sculpt their karyotypes, altering the genome organization and serving specific functions in the germline and somatic cells.
越来越多的后生动物会经历程序性DNA消除(PDE),即在发育过程中,体细胞基因组会选择性地丢失大量DNA。在一些线虫中,PDE会导致所有生殖系染色体末端的去除和重塑。在几个物种中,PDE还会产生内部断裂,导致序列丢失和体细胞染色体数量增加。与PDE相关的这些核型变化的生物学意义以及线虫PDE的起源和进化在很大程度上仍然未知。在这里,我们组装了马寄生虫的单条生殖系染色体,并比较了蛔虫线虫的核型、染色体基因组织和PDE特征。我们发现,PDE将生殖系中的XX/XY性别决定系统转变为体细胞中的XX/XO系统。对三种蛔虫染色体的比较表明,PDE存在于这些寄生虫的祖先中,它们目前不同的生殖系核型源自较小祖先染色体的融合事件。PDE中涉及的DNA断裂将这些融合的生殖系染色体分解为它们融合前的核型,导致体细胞中基因组结构和基因表达的改变。细胞学和基因组分析进一步表明,卫星DNA和异染色质染色体臂在减数分裂过程中对该蛔虫的生殖系染色体起着动态作用。总体而言,我们的结果表明,染色体融合和PDE在这些蛔虫中被用于塑造它们的核型,改变基因组组织,并在生殖系和体细胞中发挥特定功能。
Curr Biol. 2024-5-20
PLoS Pathog. 2023-2
Genome Res. 2017-11-8
Curr Biol. 2020-9-7
Methods Mol Biol. 2021
Genes (Basel). 2021-3-28
Nucleic Acids Res. 2024-8-27
Curr Opin Genet Dev. 2023-12
Curr Biol. 2023-9-11
Nat Commun. 2023-7-29
PLoS Pathog. 2023-2
Curr Biol. 2022-12-5
Curr Biol. 2022-12-5
Parasitol Res. 2022-10
Genetics. 2022-5-5