Suppr超能文献

GraphCL-DTA:一种基于分子语义的图对比学习方法,用于药物-靶标结合亲和力预测。

GraphCL-DTA: A Graph Contrastive Learning With Molecular Semantics for Drug-Target Binding Affinity Prediction.

出版信息

IEEE J Biomed Health Inform. 2024 Aug;28(8):4544-4552. doi: 10.1109/JBHI.2024.3350666. Epub 2024 Aug 6.

Abstract

Drug-target binding affinity prediction plays an important role in the early stages of drug discovery, which can infer the strength of interactions between new drugs and new targets. However, the performance of previous computational models is limited by the following drawbacks. The learning of drug representation relies only on supervised data without considering the information in the molecular graph itself. Moreover, most previous studies tended to design complicated representation learning modules, while uniformity used to measure representation quality is ignored. In this study, we propose GraphCL-DTA, a graph contrastive learning with molecular semantics for drug-target binding affinity prediction. This graph contrastive learning framework replaces the dropout-based data augmentation strategy by performing data augmentation in the embedding space, thereby better preserving the semantic information of the molecular graph. A more essential and effective drug representation can be learned through this graph contrastive framework without additional supervised data. Next, we design a new loss function that can be directly used to adjust the uniformity of drug and target representations. By directly optimizing the uniformity of representations, the representation quality of drugs and targets can be improved. The effectiveness of the above innovative elements is verified on two real datasets, KIBA and Davis. Compared with the GraphDTA model, the relative improvement of the GraphCL-DTA model on the two datasets is 2.7% and 4.5%. The graph contrastive learning framework and uniformity function in the GraphCL-DTA model can be embedded into other computational models as independent modules to improve their generalization capability.

摘要

药物-靶标结合亲和力预测在药物发现的早期阶段起着重要作用,它可以推断新药与新靶标之间相互作用的强度。然而,以前的计算模型的性能受到以下缺点的限制。药物表示的学习仅依赖于监督数据,而不考虑分子图本身的信息。此外,大多数先前的研究倾向于设计复杂的表示学习模块,而忽略了用于衡量表示质量的均匀性。在这项研究中,我们提出了 GraphCL-DTA,这是一种用于药物-靶标结合亲和力预测的具有分子语义的图对比学习。这个图对比学习框架通过在嵌入空间中执行数据增强来替代基于 dropout 的数据增强策略,从而更好地保留分子图的语义信息。通过这个图对比框架,可以在没有额外监督数据的情况下学习更本质和有效的药物表示。接下来,我们设计了一个新的损失函数,可以直接用于调整药物和靶标表示的均匀性。通过直接优化表示的均匀性,可以提高药物和靶标表示的质量。上述创新元素的有效性在两个真实数据集 KIBA 和 Davis 上得到了验证。与 GraphDTA 模型相比,GraphCL-DTA 模型在这两个数据集上的相对改进分别为 2.7%和 4.5%。GraphCL-DTA 模型中的图对比学习框架和均匀性函数可以嵌入到其他计算模型中作为独立的模块,以提高它们的泛化能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验