Suppr超能文献

HiSIF-DTA:一种用于药物-靶点亲和力预测的分层语义信息融合框架。

HiSIF-DTA: A Hierarchical Semantic Information Fusion Framework for Drug-Target Affinity Prediction.

作者信息

Bi Xiangpeng, Zhang Shugang, Ma Wenjian, Jiang Huasen, Wei Zhiqiang

出版信息

IEEE J Biomed Health Inform. 2025 Mar;29(3):1579-1590. doi: 10.1109/JBHI.2023.3334239. Epub 2025 Mar 6.

Abstract

Accurately identifying drug-target affinity (DTA) plays a significant role in promoting drug discovery and has attracted increasing attention in recent years. Exploring appropriate protein representation methods and increasing the abundance of protein information is critical in enhancing the accuracy of DTA prediction. Recently, numerous deep learning-based models have been proposed to utilize the sequential or structural features of target proteins. However, these models capture only the low-order semantics that exist in a single protein, while the high-order semantics abundant in biological networks are largely ignored. In this article, we propose HiSIF-DTA-a hierarchical semantic information fusion framework for DTA prediction. In this framework, a hierarchical protein graph is constructed that includes not only contact maps as low-order structural semantics but also protein-protein interaction (PPI) networks as high-order functional semantics. Particularly, two distinct hierarchical fusion strategies (i.e., Top-down and Bottom-Up) are designed to integrate the different protein semantics, therefore contributing to a richer protein representation. Comprehensive experimental results demonstrate that HiSIF-DTA outperforms current state -of-the-art methods for prediction on the benchmark datasets of the DTA task. Further validation on binary tasks and visualization analysis demonstrates the generalization and interpretation abilities of the proposed method.

摘要

准确识别药物-靶点亲和力(DTA)在推动药物发现方面发挥着重要作用,近年来受到了越来越多的关注。探索合适的蛋白质表示方法并增加蛋白质信息的丰富度对于提高DTA预测的准确性至关重要。最近,人们提出了许多基于深度学习的模型来利用靶蛋白的序列或结构特征。然而,这些模型只捕捉了单个蛋白质中存在的低阶语义,而生物网络中丰富的高阶语义在很大程度上被忽略了。在本文中,我们提出了HiSIF-DTA——一种用于DTA预测的层次语义信息融合框架。在这个框架中,构建了一个层次化蛋白质图,它不仅包括作为低阶结构语义的接触图,还包括作为高阶功能语义的蛋白质-蛋白质相互作用(PPI)网络。特别地,设计了两种不同的层次融合策略(即自上而下和自下而上)来整合不同的蛋白质语义,从而有助于更丰富的蛋白质表示。综合实验结果表明,HiSIF-DTA在DTA任务的基准数据集上的预测性能优于当前最先进的方法。在二元任务上的进一步验证和可视化分析证明了所提方法的泛化能力和解释能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验