Nocentini Sara, Rührmair Ulrich, Barni Mauro, Wiersma Diederik S, Riboli Francesco
Istituto Nazionale di Ricerca Metrologica, Turin, Italy.
European Laboratory for Nonlinear Spectroscopy, Sesto Fiorentino, Tuscany, Italy.
Nat Mater. 2024 Mar;23(3):369-376. doi: 10.1038/s41563-023-01734-7. Epub 2024 Jan 8.
Disordered photonic structures are promising for the realization of physical unclonable functions-physical objects that can overcome the limitations of conventional digital security and can enable cryptographic protocols immune against attacks by future quantum computers. The physical configuration of traditional physical unclonable functions is either fixed or can only be permanently modified, allowing one token per device and limiting their practicality. Here we overcome this limitation by creating reconfigurable structures made by light-transformable polymers in which the physical structure of the unclonable function can be reconfigured reversibly. Our approach allows the simultaneous coexistence of multiple physical unclonable functions within one device. The physical transformation is done all-optically in a reversible and spatially controlled fashion, allowing the generation of more complex keys. At the same time, as a set of switchable individual physical unclonable functions, it enables the authentication of multiple clients and allows for the practical implementations of quantum secure authentication and nonlinear generators of cryptographic keys.
无序光子结构有望实现物理不可克隆功能,即能够克服传统数字安全限制并能实现抵御未来量子计算机攻击的加密协议的物理对象。传统物理不可克隆功能的物理配置要么是固定的,要么只能被永久修改,每个设备只能有一个令牌,这限制了它们的实用性。在这里,我们通过创建由光可转换聚合物制成的可重构结构来克服这一限制,其中不可克隆功能的物理结构可以可逆地重新配置。我们的方法允许在一个设备内同时共存多个物理不可克隆功能。物理变换以可逆且空间可控的全光方式完成,从而能够生成更复杂的密钥。同时,作为一组可切换的单个物理不可克隆功能,它能够对多个客户端进行认证,并允许实现量子安全认证和加密密钥的非线性生成器。