Suppr超能文献

调控富锂材料中的局部氧环境可减轻电压滞后现象。

Formulating Local Environment of Oxygen Mitigates Voltage Hysteresis in Li-Rich Materials.

作者信息

Zhang Mengke, Qiu Lang, Hua Weibo, Song Yang, Deng Yuting, Wu Zhenguo, Zhu Yanfang, Zhong Benhe, Chou Shulei, Dou Shixue, Xiao Yao, Guo Xiaodong

机构信息

School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China.

Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China.

出版信息

Adv Mater. 2024 Apr;36(16):e2311814. doi: 10.1002/adma.202311814. Epub 2024 Jan 14.

Abstract

Li-rich cathode materials have emerged as one of the most prospective options for Li-ion batteries owing to their remarkable energy density (>900 Wh kg). However, voltage hysteresis during charge and discharge process lowers the energy conversion efficiency, which hinders their application in practical devices. Herein, the fundamental reason for voltage hysteresis through investigating the O redox behavior under different (de)lithiation states is unveiled and it is successfully addressed by formulating the local environment of O. In Li-rich Mn-based materials, it is confirmed that there exists reaction activity of oxygen ions at low discharge voltage (<3.6 V) in the presence of TM-TM-Li ordered arrangement, generating massive amount of voltage hysteresis and resulting in a decreased energy efficiency (80.95%). Moreover, in the case where Li 2b sites are numerously occupied by TM ions, the local environment of O evolves, the reactivity of oxygen ions at low voltage is significantly inhibited, thus giving rise to the large energy conversion efficiency (89.07%). This study reveals the structure-activity relationship between the local environment around O and voltage hysteresis, which provides guidance in designing next-generation high-performance cathode materials.

摘要

富锂正极材料因其显著的能量密度(>900 Wh/kg)而成为锂离子电池最具前景的选择之一。然而,充放电过程中的电压滞后降低了能量转换效率,这阻碍了它们在实际设备中的应用。在此,通过研究不同(脱)锂状态下的氧氧化还原行为,揭示了电压滞后的根本原因,并通过构建氧的局部环境成功解决了这一问题。在富锂锰基材料中,证实了在存在TM-TM-Li有序排列的情况下,氧离子在低放电电压(<3.6 V)下存在反应活性,产生大量电压滞后,导致能量效率降低(80.95%)。此外,在Li 2b位点被TM离子大量占据的情况下,氧的局部环境发生变化,低电压下氧离子的反应活性受到显著抑制,从而产生了较高的能量转换效率(89.07%)。本研究揭示了氧周围局部环境与电压滞后之间的构效关系,为设计下一代高性能正极材料提供了指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验