Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China.
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China.
J Am Chem Soc. 2023 Mar 8;145(9):5174-5182. doi: 10.1021/jacs.2c11640. Epub 2023 Feb 9.
Layered Li-rich oxides (LROs) that exhibit anionic and cationic redox are extensively studied due to their high energy storage capacities. However, voltage hysteresis, which reduces the energy conversion efficiency of the battery, is a critical limitation in the commercial application of LROs. Herein, using two LiRuO (LRO) model materials with 2/ and 2/ symmetries, we explored the relationship between voltage hysteresis and the electronic structure of LiRuO by neutron diffraction, in situ X-ray powder diffraction, X-ray absorption spectroscopy, macro magnetic study, and electron paramagnetic resonance (EPR) spectroscopy. The charge-transfer band gap of the LRO cathode material with isolated e electron filling decreases, reducing the oxidation potential of anion redox and thus displaying a reduced voltage hysteresis. We further synthesized Mn-based Li-rich cathode materials with practical significance and different electron spin states. Low-spin LiNiMnO with isolated e electron filling exhibited a reduced voltage hysteresis and high energy conversion efficiency. We rationalized this finding via density functional theory calculations. This discovery should provide critical guidance in designing and preparing high-energy layered Li-rich cathode materials for use in next-generation high-energy-density Li-ion batteries based on anion redox activity.
层状富锂氧化物 (LRO) 因其具有高储能容量而被广泛研究,这些氧化物具有阴离子和阳离子氧化还原活性。然而,电压滞后会降低电池的能量转换效率,这是 LRO 在商业应用中的一个关键限制。在此,我们使用具有 2/ 和 2/ 对称性的两种 LiRuO (LRO) 模型材料,通过中子衍射、原位 X 射线粉末衍射、X 射线吸收光谱、宏观磁研究和电子顺磁共振 (EPR) 光谱研究,探索了电压滞后与 LiRuO 电子结构之间的关系。具有孤立 e 电子填充的 LRO 正极材料的电荷转移能带隙减小,降低了阴离子氧化还原的氧化电位,从而表现出较小的电压滞后。我们进一步合成了具有实际意义和不同电子自旋态的基于 Mn 的富锂正极材料。具有孤立 e 电子填充的低自旋 LiNiMnO 表现出较小的电压滞后和较高的能量转换效率。我们通过密度泛函理论计算对这一发现进行了合理化解释。这一发现为基于阴离子氧化还原活性设计和制备用于下一代高能量密度锂离子电池的高能层状富锂正极材料提供了关键指导。