Suppr超能文献

分布式视觉定位用于手术器械跟踪。

Distributed visual positioning for surgical instrument tracking.

机构信息

School of Mechanical Engineering, Fuzhou University, Fuzhou, 350108, China.

Department of Informatics, University of Hamburg, 22527, Hamburg, Germany.

出版信息

Phys Eng Sci Med. 2024 Mar;47(1):273-286. doi: 10.1007/s13246-023-01363-z. Epub 2024 Jan 9.

Abstract

In clinical operations, it is crucial for surgeons to know the location of the surgical instrument. Traditional positioning systems have difficulty dealing with camera occlusion, marker occlusion, and environmental interference. To address these issues, we propose a distributed visual positioning system for surgical instrument tracking in surgery. First, we design the marker pattern with a black and white triangular grid and dot that can be adapted to various instrument surfaces and improve the marker location accuracy of the feature. The cross-points in the marker are the features that each feature has a unique ID. Furthermore, we proposed detection and identification for the position-sensing marker to realize the accurate location and identification of features. Second, we introduce multi Perspective-n-Point (mPnP) method, which fuses feature coordinates from all cameras to deduce the final result directly by the intrinsic and extrinsic parameters. This method provides a reliable initial value for the Bundle Adjustment algorithms. During instrument tracking, we assess the motion state of the instrument and select either dynamic or static Kalman filtering to mitigate any jitter in the instrument's movement. The core algorithms comparison experiment indicates our positioning algorithm has a lower reprojection error comparison to the mainstream algorithms. A series of quantitative experiments showed that the proposed system positioning error is below 0.207 mm, and the run time is below 118.842 ms. The results demonstrate the tremendous clinical application potential of our system providing accurate positioning of instruments promoting the efficiency and safety of clinical surgery.

摘要

在临床操作中,外科医生了解手术器械的位置至关重要。传统的定位系统难以处理摄像机遮挡、标记物遮挡和环境干扰等问题。为了解决这些问题,我们提出了一种用于手术中手术器械跟踪的分布式视觉定位系统。首先,我们设计了带有黑白三角形网格和点的标记模式,可以适应各种器械表面,提高特征标记物的定位精度。标记物中的交叉点是每个特征都具有唯一 ID 的特征。此外,我们提出了位置感应标记的检测和识别方法,以实现特征的精确位置和识别。其次,我们引入了多视角点(mPnP)方法,该方法融合了来自所有摄像机的特征坐标,通过内、外参数直接推导出最终结果。该方法为束调整算法提供了可靠的初始值。在器械跟踪过程中,我们评估器械的运动状态,并选择动态或静态卡尔曼滤波来减轻器械运动中的抖动。核心算法比较实验表明,我们的定位算法与主流算法相比具有更低的重投影误差。一系列定量实验表明,所提出的系统的定位误差低于 0.207mm,运行时间低于 118.842ms。结果表明,我们的系统具有巨大的临床应用潜力,为器械提供了精确的定位,提高了临床手术的效率和安全性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验