Suppr超能文献

少样本图像识别中的数据集偏差

Dataset Bias in Few-Shot Image Recognition.

作者信息

Jiang Shuqiang, Zhu Yaohui, Liu Chenlong, Song Xinhang, Li Xiangyang, Min Weiqing

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Jan;45(1):229-246. doi: 10.1109/TPAMI.2022.3153611. Epub 2022 Dec 5.

Abstract

The goal of few-shot image recognition (FSIR) is to identify novel categories with a small number of annotated samples by exploiting transferable knowledge from training data (base categories). Most current studies assume that the transferable knowledge can be well used to identify novel categories. However, such transferable capability may be impacted by the dataset bias, and this problem has rarely been investigated before. Besides, most of few-shot learning methods are biased to different datasets, which is also an important issue that needs to be investigated deeply. In this paper, we first investigate the impact of transferable capabilities learned from base categories. Specifically, we use the relevance to measure relationships between base categories and novel categories. Distributions of base categories are depicted via the instance density and category diversity. The FSIR model learns better transferable knowledge from relevant training data. In the relevant data, dense instances or diverse categories can further enrich the learned knowledge. Experimental results on different sub-datasets of Imagenet demonstrate category relevance, instance density and category diversity can depict transferable bias from distributions of base categories. Second, we investigate performance differences on different datasets from the aspects of dataset structures and different few-shot learning methods. Specifically, we introduce image complexity, intra-concept visual consistency, and inter-concept visual similarity to quantify characteristics of dataset structures. We use these quantitative characteristics and eight few-shot learning methods to analyze performance differences on multiple datasets. Based on the experimental analysis, some insightful observations are obtained from the perspective of both dataset structures and few-shot learning methods. We hope these observations are useful to guide future few-shot learning research on new datasets or tasks. Our data is available at http://123.57.42.89/dataset-bias/dataset-bias.html.

摘要

少样本图像识别(FSIR)的目标是通过利用来自训练数据(基础类别)的可转移知识,用少量带注释的样本识别新类别。当前大多数研究假设可转移知识能够很好地用于识别新类别。然而,这种可转移能力可能会受到数据集偏差的影响,而这个问题以前很少被研究。此外,大多数少样本学习方法对不同数据集存在偏差,这也是一个需要深入研究的重要问题。在本文中,我们首先研究从基础类别中学到的可转移能力的影响。具体来说,我们使用相关性来衡量基础类别和新类别之间的关系。基础类别的分布通过实例密度和类别多样性来描述。FSIR模型从相关训练数据中学到更好的可转移知识。在相关数据中,密集的实例或多样的类别可以进一步丰富所学知识。在ImageNet不同子数据集上的实验结果表明,类别相关性、实例密度和类别多样性可以从基础类别的分布中描绘出可转移偏差。其次,我们从数据集结构和不同的少样本学习方法方面研究不同数据集上的性能差异。具体来说,我们引入图像复杂度、概念内视觉一致性和概念间视觉相似性来量化数据集结构的特征。我们使用这些定量特征和八种少样本学习方法来分析多个数据集上的性能差异。基于实验分析,从数据集结构和少样本学习方法两个角度都获得了一些有见地的观察结果。我们希望这些观察结果有助于指导未来针对新数据集或任务的少样本学习研究。我们的数据可在http://123.57.42.89/dataset-bias/dataset-bias.html获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验