Suppr超能文献

手指康复器械的研究现状与展望

Research Status and Prospect of Finger Rehabilitation Machinery.

作者信息

Zhang Zhilin, Calderon Aldrin D, Huang Xingyu, Huang Axin

机构信息

School of Mechanical, Manufacturing and Energy Engineering, Mapúa University, Manila, 0900, Philippines.

School of Physics and Telecommunications Engineering, Yulin Normal University, Yulin, 537000, People's Republic of China.

出版信息

Med Devices (Auckl). 2024 Jan 3;17:1-22. doi: 10.2147/MDER.S429206. eCollection 2024.

Abstract

About 80% of stroke patients have hand motor dysfunction, and wearing finger rehabilitation machinery can enable patients to carry out efficient passive rehabilitation training independently. At present, many typical finger rehabilitation machines have been developed, and clinical experiments have confirmed the effectiveness of mechanically assisted finger rehabilitation. In this paper, the finger rehabilitation machinery will be classified in the actuation mode, and the terminal traction drive/motor drive/spring drive/rope drive/memory alloy drive/electroactive material drive/hydraulic drive/pneumatic drive technology and its typical applications are analyzed. Study the structure, control methods, overlap between mechanical bending nodes and finger joints, training modes, response speed, and driving force of various types of finger rehabilitation machinery. The advantages and disadvantages of various actuation methods of finger rehabilitation machinery are summarized. Finally, the difficulties and opportunities faced by the future development of finger rehabilitation machinery are prospected. In general, with the continuous improvement of quality of life, stroke patients need flexible, segmented control, accurate bending, multi-training mode, fast response, and good driving force finger rehabilitation machinery. This will also be a future hot research direction.

摘要

约80%的中风患者存在手部运动功能障碍,佩戴手指康复器械可使患者独立进行高效的被动康复训练。目前,已研发出许多典型的手指康复器械,临床实验证实了机械辅助手指康复的有效性。本文将手指康复器械按驱动方式分类,分析了末端牵引驱动/电机驱动/弹簧驱动/绳索驱动/记忆合金驱动/电活性材料驱动/液压驱动/气动驱动技术及其典型应用。研究各类手指康复器械的结构、控制方法、机械弯曲节点与手指关节的重合度、训练模式、响应速度和驱动力。总结了手指康复器械各种驱动方式的优缺点。最后,展望了手指康复器械未来发展面临的困难与机遇。总体而言,随着生活质量的不断提高,中风患者需要灵活、分段控制、精确弯曲、多训练模式、快速响应且驱动力良好的手指康复器械。这也将是未来热门的研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ab/10772600/4cba99845bd8/MDER-17-1-g0001.jpg

相似文献

1
Research Status and Prospect of Finger Rehabilitation Machinery.
Med Devices (Auckl). 2024 Jan 3;17:1-22. doi: 10.2147/MDER.S429206. eCollection 2024.
2
Design of a SMA-based soft composite structure for wearable rehabilitation gloves.
Front Neurorobot. 2023 Feb 10;17:1047493. doi: 10.3389/fnbot.2023.1047493. eCollection 2023.
3
Pneumatic Bionic Hand with Rigid-Flexible Coupling Structure.
Materials (Basel). 2022 Feb 13;15(4):1358. doi: 10.3390/ma15041358.
4
State of the art in parallel ankle rehabilitation robot: a systematic review.
J Neuroeng Rehabil. 2021 Mar 20;18(1):52. doi: 10.1186/s12984-021-00845-z.
5
Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
Disabil Rehabil Assist Technol. 2015 Mar;10(2):149-59. doi: 10.3109/17483107.2013.873491. Epub 2013 Dec 31.
7
Design of a Soft Composite Finger with Adjustable Joint Stiffness.
Soft Robot. 2019 Dec;6(6):722-732. doi: 10.1089/soro.2018.0148. Epub 2019 Aug 5.
8
Design of Wearable Hand Rehabilitation Glove With Bionic Fiber-Reinforced Actuator.
IEEE J Transl Eng Health Med. 2022 Aug 4;10:2100610. doi: 10.1109/JTEHM.2022.3196491. eCollection 2022.
9
A finger exoskeleton for rehabilitation and brain image study.
IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650446. doi: 10.1109/ICORR.2013.6650446.
10
iHandRehab: an interactive hand exoskeleton for active and passive rehabilitation.
IEEE Int Conf Rehabil Robot. 2011;2011:5975387. doi: 10.1109/ICORR.2011.5975387.

引用本文的文献

1
Modeling and Analysis of Torsional Stiffness in Rehabilitation Robot Joints Using Fractal Theory.
Materials (Basel). 2025 Jun 17;18(12):2866. doi: 10.3390/ma18122866.
2
Design and Driving Performance Study of Soft Actuators for Hand Rehabilitation Training.
Med Devices (Auckl). 2024 Jun 26;17:237-260. doi: 10.2147/MDER.S476464. eCollection 2024.

本文引用的文献

2
Novel evaluation of upper-limb motor performance after stroke based on normal reaching movement model.
J Neuroeng Rehabil. 2023 May 25;20(1):66. doi: 10.1186/s12984-023-01189-6.
4
Exoskeleton-Assisted Anthropomorphic Movement Training for the Upper Limb After Stroke: The EAMT Randomized Trial.
Stroke. 2023 Jun;54(6):1464-1473. doi: 10.1161/STROKEAHA.122.041480. Epub 2023 May 8.
5
Prototype development of bilateral arm mirror-like-robotic rehabilitation device for acute stroke patients.
Biomed Phys Eng Express. 2023 May 12;9(4). doi: 10.1088/2057-1976/acd11d.
6
Robotic arm use for upper limb rehabilitation after stroke: A systematic review and meta-analysis.
Kaohsiung J Med Sci. 2023 May;39(5):435-445. doi: 10.1002/kjm2.12679. Epub 2023 Mar 31.
7
Design Analysis and Actuation Performance of a Push-Pull Dielectric Elastomer Actuator.
Polymers (Basel). 2023 Feb 19;15(4):1037. doi: 10.3390/polym15041037.
9
Twisting and Braiding Fluid-Driven Soft Artificial Muscle Fibers for Robotic Applications.
Soft Robot. 2022 Aug;9(4):820-836. doi: 10.1089/soro.2021.0040. Epub 2021 Oct 5.
10
Development and comprehensive evaluation of a new spring-steel-driven glove for grasping assistance during activities of daily living.
Proc Inst Mech Eng H. 2022 Feb;236(2):259-268. doi: 10.1177/09544119211039905. Epub 2021 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验