Korsah Maame Akua, Johnston Stuart T, Tiedje Kathryn E, Day Karen P, Flegg Jennifer A, Walker Camelia R
School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia.
Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia.
medRxiv. 2023 Dec 19:2023.12.18.23300185. doi: 10.1101/2023.12.18.23300185.
Malaria remains a global health problem despite the many attempts to control and eradicate it. There is an urgent need to understand the current transmission dynamics of malaria and to determine the interventions necessary to control malaria. In this paper, we seek to develop a fit-for-purpose mathematical model to assess the interventions needed to control malaria in an endemic setting. To achieve this, we formulate a malaria transmission model to analyse the spread of malaria in the presence of interventions. A sensitivity analysis of the model is performed to determine the relative impact of the model parameters on disease transmission. We explore how existing variations in the recruitment and management of intervention strategies affect malaria transmission. Results obtained from the study imply that the discontinuation of existing interventions has a significant effect on malaria prevalence. Thus, the maintenance of interventions is imperative for malaria elimination and eradication. In a scenario study aimed at assessing the impact of long-lasting insecticidal nets (LLINs), indoor residual spraying (IRS), and localized individual measures, our findings indicate that increased LLINs utilization and extended IRS coverage (with longer-lasting insecticides) cause a more pronounced reduction in symptomatic malaria prevalence compared to a reduced LLINs utilization and shorter IRS coverage. Additionally, our study demonstrates the impact of localized preventive measures in mitigating the spread of malaria when compared to the absence of interventions.
尽管人们多次尝试控制和根除疟疾,但疟疾仍然是一个全球性的健康问题。迫切需要了解当前疟疾的传播动态,并确定控制疟疾所需的干预措施。在本文中,我们试图建立一个适用的数学模型,以评估在疟疾流行地区控制疟疾所需的干预措施。为实现这一目标,我们制定了一个疟疾传播模型,以分析在有干预措施的情况下疟疾的传播情况。对该模型进行了敏感性分析,以确定模型参数对疾病传播的相对影响。我们探讨了现有干预策略的招募和管理差异如何影响疟疾传播。研究结果表明,停止现有干预措施对疟疾流行率有显著影响。因此,维持干预措施对于消除和根除疟疾至关重要。在一项旨在评估长效驱虫蚊帐(LLINs)、室内滞留喷洒(IRS)和局部个体措施影响的情景研究中,我们的研究结果表明,与减少LLINs使用和缩短IRS覆盖范围相比,增加LLINs的使用和扩大IRS覆盖范围(使用更长效的杀虫剂)会使有症状疟疾流行率更显著降低。此外,我们的研究表明,与不采取干预措施相比,局部预防措施在减轻疟疾传播方面的影响。