Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06536.
Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536.
Proc Natl Acad Sci U S A. 2024 Jan 16;121(3):e2314699121. doi: 10.1073/pnas.2314699121. Epub 2024 Jan 10.
Energy metabolism supports neuronal function. While it is well established that changes in energy metabolism underpin brain plasticity and function, less is known about how individual neurons modulate their metabolic states to meet varying energy demands. This is because most approaches used to examine metabolism in living organisms lack the resolution to visualize energy metabolism within individual circuits, cells, or subcellular regions. Here, we adapted a biosensor for glycolysis, HYlight, for use in to image dynamic changes in glycolysis within individual neurons and in vivo. We determined that neurons cell-autonomously perform glycolysis and modulate glycolytic states upon energy stress. By examining glycolysis in specific neurons, we documented a neuronal energy landscape comprising three general observations: 1) glycolytic states in neurons are diverse across individual cell types; 2) for a given condition, glycolytic states within individual neurons are reproducible across animals; and 3) for varying conditions of energy stress, glycolytic states are plastic and adapt to energy demands. Through genetic analyses, we uncovered roles for regulatory enzymes and mitochondrial localization in the cellular and subcellular dynamic regulation of glycolysis. Our study demonstrates the use of a single-cell glycolytic biosensor to examine how energy metabolism is distributed across cells and coupled to dynamic states of neuronal function and uncovers unique relationships between neuronal identities and metabolic landscapes in vivo.
能量代谢为神经元功能提供支持。虽然已经明确,能量代谢的变化是大脑可塑性和功能的基础,但对于单个神经元如何调节其代谢状态以满足不同的能量需求,人们知之甚少。这是因为大多数用于研究生物体内代谢的方法缺乏在单个电路、细胞或亚细胞区域内可视化能量代谢的分辨率。在这里,我们对用于检测糖酵解的生物传感器 HYlight 进行了适应性改造,以用于在体成像单个神经元内和体内糖酵解的动态变化。我们发现神经元可以自主进行糖酵解,并在能量应激时调节糖酵解状态。通过检查特定神经元中的糖酵解,我们记录了一个包含三个主要观察结果的神经元能量图谱:1)神经元中的糖酵解状态在不同的细胞类型中是多样化的;2)对于给定的条件,单个神经元内的糖酵解状态在动物之间是可重复的;3)对于不同的能量应激条件,糖酵解状态是可塑的,并能适应能量需求。通过遗传分析,我们揭示了调节酶和线粒体定位在糖酵解的细胞和亚细胞动态调节中的作用。我们的研究表明,使用单细胞糖酵解生物传感器可以研究能量代谢如何在细胞间分布,并与神经元功能的动态状态相耦合,并揭示了体内神经元身份和代谢图谱之间的独特关系。