HHMI, Harvard Medical School, Boston, MA 02115.
Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115.
Proc Natl Acad Sci U S A. 2024 Jan 16;121(3):e2318455121. doi: 10.1073/pnas.2318455121. Epub 2024 Jan 10.
Mechanisms enabling genetically identical cells to differentially regulate gene expression are complex and central to organismal development and evolution. While gene silencing pathways involving DNA sequence-specific recruitment of histone-modifying enzymes are prevalent in nature, examples of sequence-independent heritable gene silencing are scarce. Studies of the fission yeast indicate that sequence-independent propagation of heterochromatin can occur but requires numerous multisubunit protein complexes and their diverse activities. Such complexity has so far precluded a coherent articulation of the minimal requirements for heritable gene silencing by conventional in vitro reconstitution approaches. Here, we take an unconventional approach to defining these requirements by engineering sequence-independent silent chromatin inheritance in budding yeast cells. The mechanism conferring memory upon these cells is remarkably simple and requires only two proteins, one that recognizes histone H3 lysine 9 methylation (H3K9me) and catalyzes the deacetylation of histone H4 lysine 16 (H4K16), and another that recognizes deacetylated H4K16 and catalyzes H3K9me. Together, these bilingual "read-write" proteins form an interdependent positive feedback loop that is sufficient for the transmission of DNA sequence-independent silent information over multiple generations.
使遗传上相同的细胞能够差异调控基因表达的机制很复杂,是生物体发育和进化的核心。虽然涉及 DNA 序列特异性募集组蛋白修饰酶的基因沉默途径在自然界中很普遍,但缺乏序列非依赖性可遗传基因沉默的例子。裂殖酵母的研究表明,异染色质的序列非依赖性传播是可能的,但需要许多多亚基蛋白复合物及其多种活性。这种复杂性迄今为止使得通过传统的体外重构方法阐明可遗传基因沉默的最小要求变得非常困难。在这里,我们通过工程设计在芽殖酵母细胞中构建序列非依赖性沉默染色质遗传,采用一种非传统的方法来定义这些要求。赋予这些细胞记忆的机制非常简单,只需要两种蛋白质,一种能识别组蛋白 H3 赖氨酸 9 甲基化(H3K9me)并催化组蛋白 H4 赖氨酸 16(H4K16)的去乙酰化,另一种能识别去乙酰化的 H4K16 并催化 H3K9me。这两种双语“读写”蛋白形成一个相互依赖的正反馈回路,足以在多个世代中传递序列非依赖性的沉默信息。