Department of Cell Biology, Emory University, Atlanta, Georgia, United States.
J Neurophysiol. 2024 Feb 1;131(2):321-337. doi: 10.1152/jn.00227.2023. Epub 2024 Jan 10.
There is a lack of experimental methods in genetically tractable mouse models to analyze the developmental period at which newborns mature weight-bearing locomotion. To overcome this deficit, we introduce methods to study l-3,4-dihydroxyphenylalanine (l-DOPA)-induced air-stepping in mice at postnatal day (P)7 and P10. Air-stepping is a stereotypic rhythmic behavior that resembles mouse walking overground locomotion but without constraints imposed by weight bearing, postural adjustments, or sensory feedback. We propose that air-stepping represents the functional organization of early spinal circuits coordinating limb movements. After subcutaneous injection of l-DOPA (0.5 mg/g), we recorded air-stepping movements in all four limbs and electromyographic (EMG) activity from ankle flexor (tibialis anterior, TA) and extensor (lateral gastrocnemius, LG) muscles. Using DeepLabCut pose estimation, we analyzed rhythmicity and limb coordination. We demonstrate steady rhythmic stepping of similar duration from P7 to P10 but with some fine-tuning of interlimb coordination with age. Hindlimb joints undergo a greater range of flexion at older ages, indicating maturation of flexion-extension cycles as the animal starts to walk. EMG recordings of TA and LG show alternation but with more focused activation particularly in the LG from P7 to P10. We discuss similarities to neonatal rat l-DOPA-induced air-stepping and infant assisted walking. We conclude that limb coordination and muscle activations recorded with this method represent basic spinal cord circuitry for limb control in neonates and pave the way for future investigations on the development of rhythmic limb control in genetic or disease models with correctly or erroneously developing motor circuitry. We present novel methods to study neonatal air-stepping in newborn mice. These methods allow analyses at the onset of limb coordination during the period in which altricial species like rats, mice, and humans "learn" to walk. The methods will be useful to test a large variety of mutations that serve as models of motor disease in newborns or that are used to probe for specific circuit mechanisms that generate coordinated limb motor output.
在遗传上可操作的小鼠模型中,缺乏用于分析新生儿成熟负重运动的发育阶段的实验方法。为了克服这一不足,我们引入了在出生后第 7 天(P7)和第 10 天(P10)研究左旋多巴(l-DOPA)诱导的空气踏步的方法。空气踏步是一种刻板的节律性行为,类似于小鼠在地面上的行走运动,但不受负重、姿势调整或感觉反馈的限制。我们提出,空气踏步代表了协调肢体运动的早期脊髓回路的功能组织。在皮下注射 l-DOPA(0.5mg/g)后,我们记录了四肢的空气踏步运动以及来自踝关节屈肌(胫骨前肌,TA)和伸肌(外侧腓肠肌,LG)的肌电图(EMG)活动。使用 DeepLabCut 姿势估计,我们分析了节律性和肢体协调性。我们证明了从 P7 到 P10 的持续稳定的节奏性踏步,但随着年龄的增长,四肢协调性也有所微调。随着年龄的增长,后肢关节的弯曲范围更大,这表明随着动物开始行走,弯曲-伸展周期的成熟。TA 和 LG 的 EMG 记录显示交替,但从 P7 到 P10 更集中在 LG 激活。我们讨论了与新生大鼠 l-DOPA 诱导的空气踏步和婴儿辅助行走的相似之处。我们得出结论,用这种方法记录的肢体协调性和肌肉激活代表了新生儿控制肢体的基本脊髓回路,并为未来在遗传或疾病模型中研究节律性肢体控制的发展铺平了道路,这些模型中运动回路的发育正确或错误。我们提出了一种新的方法来研究新生小鼠的新生儿空气踏步。这些方法允许在新生大鼠、小鼠和人类等早产儿“学习”行走的时期,分析肢体协调的开始。该方法将有助于测试大量的突变,这些突变可以作为新生儿运动疾病的模型,也可以用于探测产生协调肢体运动输出的特定回路机制。