Graduate Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
Graduate Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
J Biol Chem. 2024 Feb;300(2):105637. doi: 10.1016/j.jbc.2024.105637. Epub 2024 Jan 8.
Life adapts to daily environmental changes through circadian rhythms, exhibiting spontaneous oscillations of biological processes. These daily functional oscillations must match the metabolic requirements responding to the time of the day. We focus on the molecular mechanism of how the circadian clock regulates glucose, the primary resource for energy production and other biosynthetic pathways. The complex regulation of the circadian rhythm includes many proteins that control this process at the transcriptional and translational levels and by protein-protein interactions. We have investigated the action of one of these proteins, cryptochrome (CRY), whose elevated mRNA and protein levels repress the function of an activator in the transcription-translation feedback loop, and this activator causes elevated Cry1 mRNA. We used a genome-edited cell line model to investigate downstream genes affected explicitly by the repressor CRY. We found that CRY can repress glycolytic genes, particularly that of the gatekeeper, pyruvate dehydrogenase kinase 1 (Pdk1), decreasing lactate accumulation and glucose utilization. CRY1-mediated decrease of Pdk1 expression can also be observed in a breast cancer cell line MDA-MB-231, whose glycolysis is associated with Pdk1 expression. We also found that exogenous expression of CRY1 in the MDA-MB-231 decreases glucose usage and growth rate. Furthermore, reduced CRY1 levels and the increased phosphorylation of PDK1 substrate were observed when cells were grown in suspension compared to cells grown in adhesion. Our data supports a model that the transcription-translation feedback loop can regulate the glucose metabolic pathway through Pdk1 gene expression according to the time of the day.
生命通过昼夜节律来适应日常环境变化,表现出生物过程的自发振荡。这些日常功能振荡必须与响应一天中时间的代谢需求相匹配。我们专注于生物钟如何调节葡萄糖的分子机制,葡萄糖是能量产生和其他生物合成途径的主要资源。昼夜节律的复杂调节包括许多蛋白质,这些蛋白质在转录和翻译水平以及通过蛋白质-蛋白质相互作用来控制这个过程。我们研究了其中一种蛋白质——隐花色素(CRY)的作用,其升高的 mRNA 和蛋白质水平抑制了转录-翻译反馈环中激活剂的功能,而该激活剂会导致 Cry1 mRNA 升高。我们使用经过基因组编辑的细胞系模型来研究受抑制剂 CRY 直接影响的下游基因。我们发现 CRY 可以抑制糖酵解基因,特别是门控酶——丙酮酸脱氢酶激酶 1(Pdk1),从而减少乳酸积累和葡萄糖利用。在与 Pdk1 表达相关的乳腺癌细胞系 MDA-MB-231 中也可以观察到 CRY1 介导的 Pdk1 表达减少。我们还发现,MDA-MB-231 中外源表达 CRY1 会降低葡萄糖的使用和生长速度。此外,与贴壁细胞相比,在悬浮培养中观察到 CRY1 水平降低和 PDK1 底物磷酸化增加。我们的数据支持这样一种模型,即转录-翻译反馈环可以通过 Pdk1 基因表达来调节葡萄糖代谢途径,根据一天中的时间。