Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
Nature. 2024 Jan;625(7995):603-610. doi: 10.1038/s41586-023-06897-6. Epub 2024 Jan 10.
The genetic code of living cells has been reprogrammed to enable the site-specific incorporation of hundreds of non-canonical amino acids into proteins, and the encoded synthesis of non-canonical polymers and macrocyclic peptides and depsipeptides. Current methods for engineering orthogonal aminoacyl-tRNA synthetases to acylate new monomers, as required for the expansion and reprogramming of the genetic code, rely on translational readouts and therefore require the monomers to be ribosomal substrates. Orthogonal synthetases cannot be evolved to acylate orthogonal tRNAs with non-canonical monomers (ncMs) that are poor ribosomal substrates, and ribosomes cannot be evolved to polymerize ncMs that cannot be acylated onto orthogonal tRNAs-this co-dependence creates an evolutionary deadlock that has essentially restricted the scope of translation in living cells to α-L-amino acids and closely related hydroxy acids. Here we break this deadlock by developing tRNA display, which enables direct, rapid and scalable selection for orthogonal synthetases that selectively acylate their cognate orthogonal tRNAs with ncMs in Escherichia coli, independent of whether the ncMs are ribosomal substrates. Using tRNA display, we directly select orthogonal synthetases that specifically acylate their cognate orthogonal tRNA with eight non-canonical amino acids and eight ncMs, including several β-amino acids, α,α-disubstituted-amino acids and β-hydroxy acids. We build on these advances to demonstrate the genetically encoded, site-specific cellular incorporation of β-amino acids and α,α-disubstituted amino acids into a protein, and thereby expand the chemical scope of the genetic code to new classes of monomers.
活细胞的遗传密码已被重新编程,以实现将数百种非规范氨基酸特异地掺入蛋白质中,并对非规范聚合物和大环肽和去肽进行编码合成。目前,用于工程正交氨酰-tRNA 合成酶以酰化新单体的方法,需要扩展和重新编程遗传密码,这些方法依赖于翻译读出,因此需要单体作为核糖体底物。正交合成酶不能进化为酰化非规范单体(ncM)的正交 tRNA,因为 ncM 是核糖体的不良底物,而核糖体不能进化为聚合不能酰化到正交 tRNA 上的 ncM-这种相互依存关系造成了进化的僵局,实质上限制了活细胞中翻译的范围仅限于α-L-氨基酸和密切相关的羟基酸。在这里,我们通过开发 tRNA 展示技术打破了这种僵局,该技术可直接、快速且可扩展地选择与 ncM 选择性酰化其同源正交 tRNA 的正交合成酶,而与 ncM 是否为核糖体底物无关。使用 tRNA 展示,我们直接选择与 ncM 特异性酰化其同源正交 tRNA 的正交合成酶,包括 8 种非规范氨基酸和 8 种 ncM,包括几种β-氨基酸、α,α-二取代氨基酸和β-羟基酸。我们在此基础上进一步证明了β-氨基酸和α,α-二取代氨基酸在蛋白质中的基因编码、定点细胞内掺入,从而将遗传密码的化学范围扩展到新的单体类别。