Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
Curr Opin Chem Biol. 2018 Oct;46:115-122. doi: 10.1016/j.cbpa.2018.07.014. Epub 2018 Jul 27.
Synthesis of proteins with non-canonical amino acids via genetic code expansion is at the forefront of synthetic biology. Progress in this field has enabled site-specific incorporation of over 200 chemically and structurally diverse amino acids into proteins in an increasing number of organisms. This has been facilitated by our ability to repurpose aminoacyl-tRNA synthetases to attach non-canonical amino acids to engineered tRNAs. Current efforts in the field focus on overcoming existing limitations to the simultaneous incorporation of multiple non-canonical amino acids or amino acids that differ from the l-α-amino acid structure (e.g. d-amino acid or β-amino acid). Here, we summarize the progress and challenges in developing more selective and efficient aminoacyl-tRNA synthetases for genetic code expansion.
通过遗传密码扩展合成非天然氨基酸的蛋白质是合成生物学的前沿领域。该领域的进展使得越来越多的生物体能够将 200 多种化学和结构多样的氨基酸特异性地掺入蛋白质中。这得益于我们能够重新利用氨酰-tRNA 合成酶将非天然氨基酸连接到工程化的 tRNA 上。该领域目前的重点是克服同时掺入多种非天然氨基酸或与 l-α-氨基酸结构(例如 d-氨基酸或β-氨基酸)不同的氨基酸的现有局限性。在这里,我们总结了开发更具选择性和效率的氨酰-tRNA 合成酶以扩展遗传密码的进展和挑战。