a Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo , Japan.
b JST, PRESTO , 7-3-1 Hongo, Bunkyo-ku , Tokyo , Japan.
RNA Biol. 2018;15(4-5):453-460. doi: 10.1080/15476286.2017.1343227. Epub 2017 Sep 6.
In ribosomal translation, only 20 kinds of proteinogenic amino acids (pAAs), namely 19 l-amino acids and glycine, are exclusively incorporated into polypeptide chain. To overcome this limitation, various methods to introduce non-proteinogenic amino acids (npAAs) other than the 20 pAAs have been developed to date. However, the repertoire of amino acids that can be simultaneously introduced is still limited. Moreover, the efficiency of npAA incorporation is not always sufficient depending on their structures. Fidelity of translation is sometimes low due to misincorporation of competing pAAs and/or undesired translation termination. Here, we provide an overview of efforts to solve these issues, focusing on the engineering of tRNAs.
在核糖体翻译中,只有 20 种蛋白质氨基酸(pAAs),即 19 种 l-氨基酸和甘氨酸,被专门掺入多肽链中。为了克服这一限制,迄今为止已经开发了各种方法来引入除 20 种 pAAs 以外的非蛋白质氨基酸(npAAs)。然而,可同时引入的氨基酸种类仍然有限。此外,由于其结构的不同,npAA 的掺入效率并不总是足够的。由于竞争 pAAs 的错误掺入和/或不期望的翻译终止,翻译的保真度有时较低。在这里,我们提供了一个解决这些问题的努力的概述,重点是 tRNA 的工程。