Suppr超能文献

基于多尺度 U 型Transformer 的冠脉造影冠脉分割,融合边界聚合与拓扑保持。

Coronary vessel segmentation in coronary angiography with a multi-scale U-shaped transformer incorporating boundary aggregation and topology preservation.

机构信息

Department of Biomedical Engineering, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, People's Republic of China.

Academy of Medical Engineering and Translational Medicine, Tianjin University, People's Republic of China.

出版信息

Phys Med Biol. 2024 Jan 10;69(2). doi: 10.1088/1361-6560/ad0b63.

Abstract

Coronary vessel segmentation plays a pivotal role in automating the auxiliary diagnosis of coronary heart disease. The continuity and boundary accuracy of the segmented vessels directly affect the subsequent processing. Notably, during segmentation, vessels with severe stenosis can easily cause boundary errors and breakage, resulting in isolated islands. To address these issues, we propose a novel multi-scale U-shaped transformer with boundary aggregation and topology preservation (UT-BTNet) for coronary vessel segmentation in coronary angiography. Specifically, considering the characteristics of coronary vessels, we first develop the UT-BTNet for coronary vessels segmentation, which combines the advantages of a convolutional neural networks (CNN) and a transformer, and is able to effectively extract the local and global features of angiographic images. Secondly, we innovatively employ boundary loss and topological loss in two stages, in addition to the traditional losses. In the first stage, boundary loss is adopted, which has the effect of boundary aggregation. In the second stage, topological loss is applied to preserve the topology of the vessels, after the network converges. In the experiment, in addition to the two metrics of Dice and intersection over union (IoU), we specifically propose two metrics of boundary intersection over union (BIoU) and Betti error to evaluate boundary accuracy and the continuity of segmentation results. The results show that the Dice is 0.9291, the IoU is 0.8687, the BIoU is 0.5094, and the Betti error is 0.3400. Compared with the other state-of-the-art methods, UT-BTNet achieves better segmentation results, while ensuring the continuity and boundary accuracy of the vessels, indicating its potential clinical value.

摘要

冠状动脉血管分割在实现冠心病辅助诊断的自动化中起着关键作用。分割血管的连续性和边界准确性直接影响后续处理。值得注意的是,在分割过程中,严重狭窄的血管容易导致边界错误和断裂,形成孤立的岛状。为了解决这些问题,我们提出了一种新的基于多尺度 U 型变压器的带有边界聚合和拓扑保持的冠状动脉血管分割方法(UT-BTNet)。具体来说,考虑到冠状动脉血管的特点,我们首先开发了用于冠状动脉血管分割的 UT-BTNet,它结合了卷积神经网络(CNN)和变压器的优点,能够有效地提取血管造影图像的局部和全局特征。其次,我们创新性地在两个阶段采用边界损失和拓扑损失,除了传统的损失。在第一阶段,采用边界损失,具有边界聚合的效果。在第二阶段,应用拓扑损失来保持血管的拓扑结构,在网络收敛后。在实验中,除了 Dice 和交并比(IoU)这两个指标外,我们特别提出了边界交并比(BIoU)和贝蒂误差这两个指标来评估边界准确性和分割结果的连续性。结果表明,Dice 为 0.9291,IoU 为 0.8687,BIoU 为 0.5094,贝蒂误差为 0.3400。与其他最先进的方法相比,UT-BTNet 实现了更好的分割结果,同时保证了血管的连续性和边界准确性,表明其具有潜在的临床价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验