Center for Biomedical Imaging and Bioinformatics, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China.
Comput Biol Med. 2024 Sep;180:109009. doi: 10.1016/j.compbiomed.2024.109009. Epub 2024 Aug 12.
-Accurate lung tumor segmentation from Computed Tomography (CT) scans is crucial for lung cancer diagnosis. Since the 2D methods lack the volumetric information of lung CT images, 3D convolution-based and Transformer-based methods have recently been applied in lung tumor segmentation tasks using CT imaging. However, most existing 3D methods cannot effectively collaborate the local patterns learned by convolutions with the global dependencies captured by Transformers, and widely ignore the important boundary information of lung tumors. To tackle these problems, we propose a 3D boundary-guided hybrid network using convolutions and Transformers for lung tumor segmentation, named BGHNet. In BGHNet, we first propose the Hybrid Local-Global Context Aggregation (HLGCA) module with parallel convolution and Transformer branches in the encoding phase. To aggregate local and global contexts in each branch of the HLGCA module, we not only design the Volumetric Cross-Stripe Window Transformer (VCSwin-Transformer) to build the Transformer branch with local inductive biases and large receptive fields, but also design the Volumetric Pyramid Convolution with transformer-based extensions (VPConvNeXt) to build the convolution branch with multi-scale global information. Then, we present a Boundary-Guided Feature Refinement (BGFR) module in the decoding phase, which explicitly leverages the boundary information to refine multi-stage decoding features for better performance. Extensive experiments were conducted on two lung tumor segmentation datasets, including a private dataset (HUST-Lung) and a public benchmark dataset (MSD-Lung). Results show that BGHNet outperforms other state-of-the-art 2D or 3D methods in our experiments, and it exhibits superior generalization performance in both non-contrast and contrast-enhanced CT scans.
从计算机断层扫描(CT)扫描中准确地分割肺部肿瘤对于肺癌诊断至关重要。由于 2D 方法缺乏肺部 CT 图像的体积信息,最近已经应用了基于 3D 卷积和基于 Transformer 的方法来完成肺部肿瘤分割任务,这些方法使用 CT 成像。然而,大多数现有的 3D 方法不能有效地将卷积学习到的局部模式与 Transformer 捕获的全局依赖性结合起来,并且广泛忽略了肺部肿瘤的重要边界信息。为了解决这些问题,我们提出了一种使用卷积和 Transformer 进行肺部肿瘤分割的 3D 边界引导混合网络,称为 BGHNet。在 BGHNet 中,我们首先在编码阶段提出了具有并行卷积和 Transformer 分支的混合局部-全局上下文聚合(HLGCA)模块。为了在 HLGCA 模块的每个分支中聚合局部和全局上下文,我们不仅设计了带有局部归纳偏差和大感受野的体交叉条纹窗口 Transformer(VCSwin-Transformer)来构建 Transformer 分支,还设计了带有基于 Transformer 扩展的体金字塔卷积(VPConvNeXt)来构建具有多尺度全局信息的卷积分支。然后,我们在解码阶段提出了边界引导特征细化(BGFR)模块,该模块明确地利用边界信息来细化多阶段解码特征,以获得更好的性能。我们在两个肺部肿瘤分割数据集上进行了广泛的实验,包括一个私有数据集(HUST-Lung)和一个公共基准数据集(MSD-Lung)。结果表明,BGHNet 在我们的实验中优于其他最先进的 2D 或 3D 方法,并且在非对比和对比增强 CT 扫描中都表现出了优越的泛化性能。