Plant Breeding and Acclimatization Institute, National Research Institute, Radzików, Błonie, 05-870, Poland.
Institute of Biotechnology, College of Natural Science, University of Rzeszow, Al. Rejtana 16c, Rzeszow, 35-959, Poland.
BMC Plant Biol. 2024 Jan 11;24(1):43. doi: 10.1186/s12870-023-04679-w.
The development of the plant in vitro techniques has brought about the variation identified in regenerants known as somaclonal or tissue culture-induced variation (TCIV). S-adenosyl-L-methionine (SAM), glutathione (GSH), low methylated pectins (LMP), and Cu(II) ions may be implicated in green plant regeneration efficiency (GPRE) and TCIV, according to studies in barley (Hordeum vulgare L.) and partially in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927). Using structural equation models (SEM), these metabolites have been connected to the metabolic pathways (Krebs and Yang cycles, glycolysis, transsulfuration), but not for triticale. Using metabolomic and (epi)genetic data, the study sought to develop a triticale regeneration efficiency statistical model. The culture's induction medium was supplemented with various quantities of Cu(II) and Ag(I) ions for regeneration. The period of plant regeneration has also changed. The donor plant, anther-derived regenerants, and metAFLP were utilized to analyze TCIV concerning DNA in symmetric (CG, CHG) and asymmetric (CHH) sequence contexts. Attenuated Total Reflectance-Fourier Transfer Infrared (ATR-FTIR) spectroscopy was used to gather the metabolomic information on LMP, SAM, and GSH. To frame the data, a structural equation model was employed.
According to metAFLP analysis, the average sequence change in the CHH context was 8.65%, and 0.58% was de novo methylation. Absorbances of FTIR spectra in regions specific for LMP, SAM, and GSH were used as variables values introduced to the SEM model. The average number of green regenerants per 100 plated anthers was 2.55.
The amounts of pectin demethylation, SAM, de novo methylation, and GSH are connected in the model to explain GPRE. By altering the concentration of Cu(II) ions in the medium, which influences the amount of pectin, triticale's GPRE can be increased.
植物离体培养技术的发展带来了再生体中已识别的变异,称为体细胞无性系变异或组织培养诱导变异(TCIV)。根据对大麦(Hordeum vulgare L.)的研究以及对黑小麦(× Triticosecale spp. Wittmack ex A. Camus 1927)的部分研究,S-腺苷-L-甲硫氨酸(SAM)、谷胱甘肽(GSH)、低甲基化果胶(LMP)和 Cu(II)离子可能与绿色植物再生效率(GPRE)和 TCIV 有关。使用结构方程模型(SEM),这些代谢物已与代谢途径(Krebs 和 Yang 循环、糖酵解、转硫途径)相关联,但不适用于黑小麦。使用代谢组学和(epi)遗传学数据,该研究旨在为黑小麦再生效率统计模型的开发。培养的诱导培养基中添加了不同量的 Cu(II)和 Ag(I)离子以进行再生。植物再生的时期也发生了变化。利用供体植物、花药再生体和 metAFLP 分析了在对称(CG、CHG)和不对称(CHH)序列背景下 DNA 的 TCIV。衰减全反射-傅里叶变换红外(ATR-FTIR)光谱用于收集关于 LMP、SAM 和 GSH 的代谢组学信息。为了构建数据,使用了结构方程模型。
根据 metAFLP 分析,CHH 背景下的平均序列变化为 8.65%,从头甲基化率为 0.58%。FTIR 光谱在特定于 LMP、SAM 和 GSH 的区域的吸收度用作引入 SEM 模型的变量值。每 100 个接种的花药中绿色再生体的平均数量为 2.55。
模型中连接了果胶脱甲基化、SAM、从头甲基化和 GSH 的量,以解释 GPRE。通过改变培养基中 Cu(II)离子的浓度,可以增加黑小麦的 GPRE,从而影响果胶的含量。