Department of Biochemistry, University of California, Riverside, CA, 92521, USA.
Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA.
Nat Commun. 2022 Jul 5;13(1):3877. doi: 10.1038/s41467-022-31627-3.
DNA methylation is an evolutionarily conserved epigenetic mechanism essential for transposon silencing and heterochromatin assembly. In plants, DNA methylation widely occurs in the CG, CHG, and CHH (H = A, C, or T) contexts, with the maintenance of CHG methylation mediated by CMT3 chromomethylase. However, how CMT3 interacts with the chromatin environment for faithful maintenance of CHG methylation is unclear. Here we report structure-function characterization of the H3K9me2-directed maintenance of CHG methylation by CMT3 and its Zea mays ortholog ZMET2. Base-specific interactions and DNA deformation coordinately underpin the substrate specificity of CMT3 and ZMET2, while a bivalent readout of H3K9me2 and H3K18 allosterically stimulates substrate binding. Disruption of the interaction with DNA or H3K9me2/H3K18 led to loss of CMT3/ZMET2 activity in vitro and impairment of genome-wide CHG methylation in vivo. Together, our study uncovers how the intricate interplay of CMT3, repressive histone marks, and DNA sequence mediates heterochromatic CHG methylation.
DNA 甲基化是一种进化上保守的表观遗传机制,对于转座子沉默和异染色质组装至关重要。在植物中,DNA 甲基化广泛发生在 CG、CHG 和 CHH(H=A、C 或 T)背景下,CHG 甲基化的维持由 CMT3 染色质甲基转移酶介导。然而,CMT3 如何与染色质环境相互作用以实现 CHG 甲基化的忠实维持尚不清楚。在这里,我们报告了 CMT3 及其玉米同源物 ZMET2 对 H3K9me2 指导的 CHG 甲基化维持的结构-功能特征。碱基特异性相互作用和 DNA 变形共同为 CMT3 和 ZMET2 的底物特异性提供了基础,而 H3K9me2 和 H3K18 的双价读数则变构地刺激了底物结合。与 DNA 或 H3K9me2/H3K18 的相互作用的破坏导致 CMT3/ZMET2 在体外的活性丧失,以及体内全基因组 CHG 甲基化的损伤。总之,我们的研究揭示了 CMT3、抑制性组蛋白标记和 DNA 序列如何相互作用来介导异染色质 CHG 甲基化。