Suppr超能文献

辐射对人微血管内皮细胞线粒体形态和克隆集落存活的剂量依赖性效应。

Dose-Dependent Effects of Radiation on Mitochondrial Morphology and Clonogenic Cell Survival in Human Microvascular Endothelial Cells.

机构信息

Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA.

Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA.

出版信息

Cells. 2023 Dec 23;13(1):39. doi: 10.3390/cells13010039.

Abstract

To better understand radiation-induced organ dysfunction at both high and low doses, it is critical to understand how endothelial cells (ECs) respond to radiation. The impact of irradiation (IR) on ECs varies depending on the dose administered. High doses can directly damage ECs, leading to EC impairment. In contrast, the effects of low doses on ECs are subtle but more complex. Low doses in this study refer to radiation exposure levels that are below those that cause immediate and necrotic damage. Mitochondria are the primary cellular components affected by IR, and this study explored their role in determining the effect of radiation on microvascular endothelial cells. Human dermal microvascular ECs (HMEC-1) were exposed to varying IR doses ranging from 0.1 Gy to 8 Gy (~0.4 Gy/min) in the AFRRI 60-Cobalt facility. Results indicated that high doses led to a dose-dependent reduction in cell survival, which can be attributed to factors such as DNA damage, oxidative stress, cell senescence, and mitochondrial dysfunction. However, low doses induced a small but significant increase in cell survival, and this was achieved without detectable DNA damage, oxidative stress, cell senescence, or mitochondrial dysfunction in HMEC-1. Moreover, the mitochondrial morphology was assessed, revealing that all doses increased the percentage of elongated mitochondria, with low doses (0.25 Gy and 0.5 Gy) having a greater effect than high doses. However, only high doses caused an increase in mitochondrial fragmentation/swelling. The study further revealed that low doses induced mitochondrial elongation, likely via an increase in mitochondrial fusion protein 1 (Mfn1), while high doses caused mitochondrial fragmentation via a decrease in optic atrophy protein 1 (Opa1). In conclusion, the study suggests, for the first time, that changes in mitochondrial morphology are likely involved in the mechanism for the radiation dose-dependent effect on the survival of microvascular endothelial cells. This research, by delineating the specific mechanisms through which radiation affects endothelial cells, offers invaluable insights into the potential impact of radiation exposure on cardiovascular health.

摘要

为了更好地理解高剂量和低剂量辐射诱导的器官功能障碍,了解内皮细胞(ECs)如何对辐射做出反应至关重要。辐照(IR)对 ECs 的影响因给予的剂量而异。高剂量可直接损伤 ECs,导致 EC 功能障碍。相比之下,低剂量对 ECs 的影响虽微妙但更复杂。本研究中的低剂量是指低于引起即刻性和坏死性损伤的辐射暴露水平。线粒体是受 IR 影响最大的细胞成分,本研究探讨了它们在确定辐射对微血管内皮细胞影响中的作用。人皮肤微血管内皮细胞(HMEC-1)在 AFRRI 60 钴设施中接受了从 0.1Gy 到 8Gy(~0.4Gy/min)的不同 IR 剂量照射。结果表明,高剂量导致细胞存活率呈剂量依赖性下降,这可归因于 DNA 损伤、氧化应激、细胞衰老和线粒体功能障碍等因素。然而,低剂量诱导细胞存活率小但显著增加,且在 HMEC-1 中未检测到 DNA 损伤、氧化应激、细胞衰老或线粒体功能障碍的情况下实现。此外,评估了线粒体形态,结果表明所有剂量均增加了伸长线粒体的百分比,低剂量(0.25Gy 和 0.5Gy)的效果大于高剂量。然而,只有高剂量导致线粒体碎片化/肿胀增加。研究进一步表明,低剂量通过增加线粒体融合蛋白 1(Mfn1)诱导线粒体伸长,而高剂量通过减少视神经萎缩蛋白 1(Opa1)导致线粒体碎片化。总之,该研究首次表明,线粒体形态的变化可能参与了辐射剂量依赖性影响微血管内皮细胞存活的机制。这项研究通过描绘辐射影响内皮细胞的具体机制,为辐射暴露对心血管健康的潜在影响提供了宝贵的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验