Suppr超能文献

人工智能与子宫内膜癌MRI的影像组学:探索相关内容、原因及方法

Artificial Intelligence and Radiomics for Endometrial Cancer MRI: Exploring the Whats, Whys and Hows.

作者信息

Leo Elisabetta, Stanzione Arnaldo, Miele Mariaelena, Cuocolo Renato, Sica Giacomo, Scaglione Mariano, Camera Luigi, Maurea Simone, Mainenti Pier Paolo

机构信息

Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy.

Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy.

出版信息

J Clin Med. 2023 Dec 30;13(1):226. doi: 10.3390/jcm13010226.

Abstract

Endometrial cancer (EC) is intricately linked to obesity and diabetes, which are widespread risk factors. Medical imaging, especially magnetic resonance imaging (MRI), plays a major role in EC assessment, particularly for disease staging. However, the diagnostic performance of MRI exhibits variability in the detection of clinically relevant prognostic factors (e.g., deep myometrial invasion and metastatic lymph nodes assessment). To address these challenges and enhance the value of MRI, radiomics and artificial intelligence (AI) algorithms emerge as promising tools with a potential to impact EC risk assessment, treatment planning, and prognosis prediction. These advanced post-processing techniques allow us to quantitatively analyse medical images, providing novel insights into cancer characteristics beyond conventional qualitative image evaluation. However, despite the growing interest and research efforts, the integration of radiomics and AI to EC management is still far from clinical practice and represents a possible perspective rather than an actual reality. This review focuses on the state of radiomics and AI in EC MRI, emphasizing risk stratification and prognostic factor prediction, aiming to illuminate potential advancements and address existing challenges in the field.

摘要

子宫内膜癌(EC)与肥胖和糖尿病密切相关,而肥胖和糖尿病是普遍存在的风险因素。医学成像,尤其是磁共振成像(MRI),在EC评估中起着重要作用,特别是在疾病分期方面。然而,MRI在检测临床相关预后因素(如肌层深部浸润和转移性淋巴结评估)时,其诊断性能存在差异。为应对这些挑战并提高MRI的价值,放射组学和人工智能(AI)算法成为有前景的工具,有可能影响EC风险评估、治疗规划和预后预测。这些先进的后处理技术使我们能够对医学图像进行定量分析,提供超越传统定性图像评估的癌症特征新见解。然而,尽管人们的兴趣和研究努力不断增加,但放射组学和AI在EC管理中的整合仍远未应用于临床实践,只是一种可能的前景而非实际现实。本综述重点关注EC MRI中放射组学和AI的现状,强调风险分层和预后因素预测,旨在阐明该领域的潜在进展并应对现有挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a85e/10779496/87ac55b3758b/jcm-13-00226-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验