Suppr超能文献

人工智能影像组学在妇科癌症诊断、治疗及预后中的应用:文献综述

Artificial intelligence radiomics in the diagnosis, treatment, and prognosis of gynecological cancer: a literature review.

作者信息

Bai Gengshen, Huo Shiwen, Wang Guangcai, Tian Shijia

机构信息

Department of Intervention, The Second People's Hospital of Baiyin City, Baiyin, China.

Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China.

出版信息

Transl Cancer Res. 2025 Apr 30;14(4):2508-2532. doi: 10.21037/tcr-2025-618. Epub 2025 Apr 27.

Abstract

BACKGROUND AND OBJECTIVE

Gynecological cancer is the most common cancer that affects women's quality of life and well-being. Artificial intelligence (AI) technology enables us to exploit high-dimensional imaging data for precision oncology. Tremendous progress has been made with AI radiomics in cancers such as lung and breast cancers. Herein, we performed a literature review on AI radiomics in the management of gynecological cancer.

METHODS

A search was performed in the databases of PubMed, Embase, and Web of Science for original articles written in English up to 10 September 2024, using the terms "gynecological cancer", "cervical cancer", "endometrial cancer", "ovarian cancer", AND "artificial intelligence", "AI", AND "radiomics". The included studies mainly focused on the current landscape of AI radiomics in the diagnosis, treatment, and prognosis of gynecological cancer.

KEY CONTENT AND FINDINGS

A total of 128 studies were included, with 86 studies focusing on tumor diagnosis (n=23) and characterization (n=63), 15 on treatment response prediction, and 27 on recurrence and survival prediction. AI radiomics has shown potential value in tumor diagnosis and characterization [tumor staging, histological subtyping, lymph node metastasis (LNM), lymphovascular space invasion (LVSI), myometrial invasion (MI), and other molecular or clinicopathological factors], chemotherapy or chemoradiotherapy response evaluation, and prognosis (disease recurrence or metastasis, and survival) prediction. However, most included studies were single-center and retrospective. There was substantial heterogeneity in methodology and results reporting.

CONCLUSIONS

AI radiomics has been increasingly adopted in the management of gynecological cancer. Further validation in large-scale datasets is needed before clinical translation.

摘要

背景与目的

妇科癌症是影响女性生活质量和幸福感的最常见癌症。人工智能(AI)技术使我们能够利用高维成像数据进行精准肿瘤学研究。AI放射组学在肺癌和乳腺癌等癌症领域已取得巨大进展。在此,我们对AI放射组学在妇科癌症管理中的应用进行了文献综述。

方法

在PubMed、Embase和Web of Science数据库中进行检索,截至2024年9月10日,搜索英文撰写的原创文章,使用的检索词为“妇科癌症”“宫颈癌”“子宫内膜癌”“卵巢癌”以及“人工智能”“AI”和“放射组学”。纳入的研究主要聚焦于AI放射组学在妇科癌症诊断、治疗和预后方面的现状。

关键内容与发现

共纳入128项研究,其中86项研究聚焦于肿瘤诊断(n = 23)和特征描述(n = 63),15项研究涉及治疗反应预测,27项研究涉及复发和生存预测。AI放射组学在肿瘤诊断和特征描述[肿瘤分期、组织学亚型、淋巴结转移(LNM)、淋巴管间隙浸润(LVSI)、肌层浸润(MI)以及其他分子或临床病理因素]、化疗或放化疗反应评估以及预后(疾病复发或转移、生存)预测方面已显示出潜在价值。然而,大多数纳入研究为单中心回顾性研究。在方法学和结果报告方面存在很大异质性。

结论

AI放射组学在妇科癌症管理中的应用日益广泛。在临床转化之前,需要在大规模数据集中进行进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee9c/12079260/d1d8a5befad1/tcr-14-04-2508-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验