全容积肿瘤 MRI 影像组学在子宫内膜癌预后建模中的应用。

Whole-Volume Tumor MRI Radiomics for Prognostic Modeling in Endometrial Cancer.

机构信息

Department of Radiology, Mohn Medical Imaging and Visualization Centre (MMIV), Haukeland University Hospital, Bergen, Norway.

Section for Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.

出版信息

J Magn Reson Imaging. 2021 Mar;53(3):928-937. doi: 10.1002/jmri.27444. Epub 2020 Nov 16.

Abstract

BACKGROUND

In endometrial cancer (EC), preoperative pelvic MRI is recommended for local staging, while final tumor stage and grade are established by surgery and pathology. MRI-based radiomic tumor profiling may aid in preoperative risk-stratification and support clinical treatment decisions in EC.

PURPOSE

To develop MRI-based whole-volume tumor radiomic signatures for prediction of aggressive EC disease.

STUDY TYPE

Retrospective.

POPULATION

A total of 138 women with histologically confirmed EC, divided into training (n = 108) and validation cohorts (n = 30).

FIELD STRENGTH/SEQUENCE: Axial oblique T -weighted gradient echo volumetric interpolated breath-hold examination (VIBE) at 1.5T (71/138 patients) and DIXON VIBE at 3T (67/138 patients) at 2 minutes postcontrast injection.

ASSESSMENT

Primary tumors were manually segmented by two radiologists with 4 and 8 years' of experience. Radiomic tumor features were computed and used for prediction of surgicopathologically-verified deep (≥50%) myometrial invasion (DMI), lymph node metastases (LNM), advanced stage (FIGO III + IV), nonendometrioid (NE) histology, and high-grade endometrioid tumors (E3). Corresponding analyses were also conducted using radiomics extracted from the axial oblique image slice depicting the largest tumor area.

STATISTICAL TESTS

Logistic least absolute shrinkage and selection operator (LASSO) was applied for radiomic modeling in the training cohort. The diagnostic performances of the radiomic signatures were evaluated by area under the receiver operating characteristic curve in the training (AUC ) and validation (AUC ) cohorts. Progression-free survival was assessed using the Kaplan-Meier and Cox proportional hazard model.

RESULTS

The whole-tumor radiomic signatures yielded AUC /AUC of 0.84/0.76 for predicting DMI, 0.73/0.72 for LNM, 0.71/0.68 for FIGO III + IV, 0.68/0.74 for NE histology, and 0.79/0.63 for high-grade (E3) tumor. Single-slice radiomics yielded comparable AUC but significantly lower AUC for LNM and FIGO III + IV (both P < 0.05). Tumor volume yielded comparable AUC to the whole-tumor radiomic signatures for prediction of DMI, LNM, FIGO III + IV, and NE, but significantly lower AUC for E3 tumors (P < 0.05). All of the whole-tumor radiomic signatures significantly predicted poor progression-free survival with hazard ratios of 4.6-9.8 (P < 0.05 for all).

DATA CONCLUSION

MRI-based whole-tumor radiomic signatures yield medium-to-high diagnostic performance for predicting aggressive EC disease. The signatures may aid in preoperative risk assessment and hence guide personalized treatment strategies in EC.

LEVEL OF EVIDENCE

4 TECHNICAL EFFICACY STAGE: 2.

摘要

背景

在子宫内膜癌(EC)中,术前盆腔 MRI 被推荐用于局部分期,而最终的肿瘤分期和分级则由手术和病理确定。基于 MRI 的放射组学肿瘤特征分析可能有助于术前风险分层,并支持 EC 中的临床治疗决策。

目的

开发基于 MRI 的全容积肿瘤放射组学特征,用于预测侵袭性 EC 疾病。

研究类型

回顾性。

人群

共有 138 名经组织学证实的 EC 患者,分为训练队列(n = 108)和验证队列(n = 30)。

场强/序列:1.5T 轴斜 T1 加权梯度回波容积内插屏气检查(VIBE)(71/138 例患者)和 3T DIXON VIBE(67/138 例患者)在对比剂注射后 2 分钟。

评估

两位具有 4 年和 8 年经验的放射科医生手动对原发性肿瘤进行分割。计算放射组学肿瘤特征,并用于预测手术病理证实的深层(≥50%)肌层浸润(DMI)、淋巴结转移(LNM)、晚期(FIGO III+IV)、非子宫内膜样(NE)组织学和高级别子宫内膜样肿瘤(E3)。还使用描绘最大肿瘤区域的轴斜图像切片中提取的放射组学进行了相应的分析。

统计学检验

逻辑最小绝对值收缩和选择算子(LASSO)用于训练队列中的放射组学建模。在训练队列(AUC)和验证队列(AUC)中,通过受试者工作特征曲线下面积评估放射组学特征的诊断性能。使用 Kaplan-Meier 和 Cox 比例风险模型评估无进展生存期。

结果

全肿瘤放射组学特征预测 DMI 的 AUC/AUC 为 0.84/0.76,LNM 为 0.73/0.72,FIGO III+IV 为 0.71/0.68,NE 组织学为 0.68/0.74,高级别(E3)肿瘤为 0.79/0.63。单切片放射组学预测 LNM 和 FIGO III+IV 的 AUC 具有可比性,但 AUC 明显较低(均 P<0.05)。肿瘤体积对预测 DMI、LNM、FIGO III+IV 和 NE 的性能与全肿瘤放射组学特征相当,但预测 E3 肿瘤的 AUC 明显较低(P<0.05)。所有全肿瘤放射组学特征均显著预测无进展生存期不良,风险比为 4.6-9.8(所有 P<0.05)。

数据结论

基于 MRI 的全肿瘤放射组学特征对预测侵袭性 EC 疾病具有中等至高的诊断性能。这些特征可能有助于术前风险评估,从而指导 EC 中的个体化治疗策略。

证据水平

4 技术功效阶段:2。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9b5/7894560/db2b3ac75f3d/JMRI-53-928-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索