文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

柑橘黄龙病下柑橘根系细菌微生物群的共现分析

Co-Occurrence Analysis of Citrus Root Bacterial Microbiota under Citrus Greening Disease.

作者信息

Park Jong-Won, Braswell W Evan, Kunta Madhurababu

机构信息

Citrus Center, Texas A&M University-Kingsville, 312 N. International Blvd., Weslaco, TX 78599, USA.

Insect Management and Molecular Diagnostic Laboratory, USDA APHIS PPQ S&T, Edinburg, TX 78541, USA.

出版信息

Plants (Basel). 2023 Dec 26;13(1):80. doi: 10.3390/plants13010080.


DOI:10.3390/plants13010080
PMID:38202388
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10781011/
Abstract

Liberibacter asiaticus (CLas) is associated with Citrus Huanglongbing (HLB), a devastating disease in the US. Previously, we conducted a two-year-long monthly HLB survey by quantitative real-time PCR using root DNA fractions prepared from 112 field grapefruit trees grafted on sour orange rootstock. Approximately 10% of the trees remained CLas-free during the entire survey period. This study conducted 16S metagenomics using the time-series root DNA fractions, monthly prepared during twenty-four consecutive months, followed by microbial co-occurrence network analysis to investigate the microbial factors contributing to the CLas-free phenotype of the aforementioned trees. Based on the HLB status and the time when the trees were first diagnosed as CLas-positive during the survey, the samples were divided into four groups, Stage H (healthy), Stage I (early), II (mid), and III (late) samples. The 16S metagenomics data using Silva 16S database v132 revealed that HLB compromised the diversity of rhizosphere microbiota. At the phylum level, Actinobacteria and Proteobacteria were the predominant bacterial phyla, comprising >93% of total bacterial phyla, irrespective of HLB status. In addition, a temporal change in the rhizosphere microbe population was observed during a two-year-long survey, from which we confirmed that some bacterial families differently responded to HLB disease status. The clustering of the bacterial co-occurrence network data revealed the presence of a subnetwork composed of and bacterial families with plant growth-promoting activity in Stage H and III samples. These data implicated that the subnetwork may act as a functional unit against HLB.

摘要

亚洲韧皮杆菌(CLas)与柑橘黄龙病(HLB)有关,柑橘黄龙病是美国一种极具破坏性的疾病。此前,我们通过定量实时PCR进行了为期两年的月度HLB调查,使用从112株嫁接到酸橙砧木上的田间葡萄柚树制备的根系DNA组分。在整个调查期间,约10%的树木未感染CLas。本研究使用连续24个月每月制备的时间序列根系DNA组分进行16S宏基因组学分析,随后进行微生物共现网络分析,以研究导致上述树木无CLas表型的微生物因素。根据HLB状态以及树木在调查期间首次被诊断为CLas阳性的时间,将样本分为四组,即H期(健康)、I期(早期)、II期(中期)和III期(晚期)样本。使用Silva 16S数据库v132的16S宏基因组学数据显示,HLB损害了根际微生物群的多样性。在门水平上,放线菌门和变形菌门是主要的细菌门,无论HLB状态如何,它们占细菌门总数的>93%。此外,在为期两年的调查中观察到根际微生物种群的时间变化,从中我们证实一些细菌科对HLB疾病状态有不同反应。细菌共现网络数据的聚类揭示了在H期和III期样本中存在一个由具有促进植物生长活性的细菌科组成的子网。这些数据表明该子网可能作为对抗HLB的功能单元。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce56/10781011/6aff9399d8cb/plants-13-00080-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce56/10781011/5089dbcb5bcb/plants-13-00080-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce56/10781011/0ae3a5cd43fb/plants-13-00080-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce56/10781011/cb47cbd22a2a/plants-13-00080-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce56/10781011/3edbfa356516/plants-13-00080-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce56/10781011/0d68a0359580/plants-13-00080-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce56/10781011/019d559925c8/plants-13-00080-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce56/10781011/5f30cd59ffaf/plants-13-00080-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce56/10781011/049050061828/plants-13-00080-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce56/10781011/6aff9399d8cb/plants-13-00080-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce56/10781011/5089dbcb5bcb/plants-13-00080-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce56/10781011/0ae3a5cd43fb/plants-13-00080-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce56/10781011/cb47cbd22a2a/plants-13-00080-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce56/10781011/3edbfa356516/plants-13-00080-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce56/10781011/0d68a0359580/plants-13-00080-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce56/10781011/019d559925c8/plants-13-00080-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce56/10781011/5f30cd59ffaf/plants-13-00080-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce56/10781011/049050061828/plants-13-00080-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce56/10781011/6aff9399d8cb/plants-13-00080-g009.jpg

相似文献

[1]
Co-Occurrence Analysis of Citrus Root Bacterial Microbiota under Citrus Greening Disease.

Plants (Basel). 2023-12-26

[2]
The Total Population Size of ' Liberibacter asiaticus' Inside the Phloem of Citrus Trees and the Corresponding Metabolic Burden Related to Huanglongbing Disease Development.

Phytopathology. 2021-7

[3]
Distribution of Liberibacter asiaticus in Citrus and the Asian Citrus Psyllid in Texas Over a Decade.

Plant Dis. 2020-2-10

[4]
Bacteriomic Analyses of Asian Citrus Psyllid and Citrus Samples Infected With " Liberibacter asiaticus" in Southern California and Huanglongbing Management Implications.

Front Microbiol. 2021-7-2

[5]
Metabolome and Microbiome Signatures in the Roots of Citrus Affected by Huanglongbing.

Phytopathology. 2019-11-8

[6]
Microscopic and Transcriptomic Analyses of Early Events Triggered by ' Liberibacter asiaticus' in Young Flushes of Huanglongbing-Positive Citrus Trees.

Phytopathology. 2023-6

[7]
Defining the Core Citrus Leaf- and Root-Associated Microbiota: Factors Associated with Community Structure and Implications for Managing Huanglongbing (Citrus Greening) Disease.

Appl Environ Microbiol. 2017-5-17

[8]
'Candidatus Liberibacter americanus', associated with citrus huanglongbing (greening disease) in São Paulo State, Brazil.

Int J Syst Evol Microbiol. 2005-9

[9]
Endophytes and Plant Extracts as Potential Antimicrobial Agents against Liberibacter Asiaticus, Causal Agent of Huanglongbing.

Microorganisms. 2023-6-8

[10]
Soil applied Ca, Mg and B altered phyllosphere and rhizosphere bacterial microbiome and reduced Huanglongbing incidence in Gannan Navel Orange.

Sci Total Environ. 2021-10-15

引用本文的文献

[1]
Exploring the role of Peanut (Arachis hypogaea L.) root architecture in enhancing adaptation to climate change for sustainable agriculture and resilient crop production: A review.

J Genet Eng Biotechnol. 2025-9

本文引用的文献

[1]
Soil microbiome engineering for sustainability in a changing environment.

Nat Biotechnol. 2023-12

[2]
The root microbiome: techniques for exploration and agricultural applications.

Biotechniques. 2023-7

[3]
The root microbiome: Community assembly and its contributions to plant fitness.

J Integr Plant Biol. 2022-2

[4]
Crafting the plant root metabolome for improved microbe-assisted stress resilience.

New Phytol. 2022-6

[5]
Controlling Citrus Huanglongbing: Green Sustainable Development Route Is the Future.

Front Plant Sci. 2021-11-15

[6]
Conditioned soils reveal plant-selected microbial communities that impact plant drought response.

Sci Rep. 2021-10-27

[7]
Prolonged drought imparts lasting compositional changes to the rice root microbiome.

Nat Plants. 2021-8

[8]
Coevolution of roots and mycorrhizas of land plants.

New Phytol. 2002-5

[9]
Comparison of Methods for Picking the Operational Taxonomic Units From Amplicon Sequences.

Front Microbiol. 2021-3-24

[10]
Microbiota-root-shoot-environment axis and stress tolerance in plants.

Curr Opin Plant Biol. 2021-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索