Brundrett Mark C
Soil Science and Plant Nutrition, Faculty of Natural & Agricultural Sciences, The University of Western Australia, Nedlands WA 6097, Australia; Postal address: Kings Park and Botanic Garden, Botanic Gardens & Parks Authority, West Perth, 6005, Western Australia.
New Phytol. 2002 May;154(2):275-304. doi: 10.1046/j.1469-8137.2002.00397.x.
Here, the coevolution of mycorrhizal fungi and roots is assessed in the light of evidence now available, from palaeobotanical and morphological studies and the analysis of DNA-based phylogenies. The first bryophyte-like land plants, in the early Devonian (400 million years ago), had endophytic associations resembling vesicular-arbuscular mycorrhizas (VAM) even before roots evolved. Mycorrhizal evolution would have progressed from endophytic hyphae towards balanced associations where partners were interdependent due to the exchange of limiting energy and nutrient resources. Most mycorrhizas are mutualistic, but in some cases the trend for increasing plant control of fungi culminates in the exploitative mycorrhizas of achlorophyllous, mycoheterotrophic plants. Ectomycorrhizal, ericoid and orchid mycorrhizas, as well as nonmycorrhizal roots, evolved during the period of rapid angiosperm radiation in the Cretaceous. It is hypothesised that roots gradually evolved from rhizomes to provide more suitable habitats for mycorrhizal fungi and provide plants with complex branching and leaves with water and nutrients. Selection pressures have caused the morphological divergence of roots with different types of mycorrizas. Root cortex thickness and exodermis suberization are greatest in obllgately mycorrhizal plants, while nonmycorrhizal plants tend to have fine roots, with more roots hairs and relatively advanced chemical defences. Major coevolutionary trends and the relative success of plants with different root types are discussed. Contents Summary 275 I. Introduction 276 II. Mycorrhizal Fungi 276 III. The Dawn of Mycorrhizas 279 IV. Mycorrhizal Associations of Living and Extinct Plants 282 V. Evolution of Roots 288 VI. The Root as a Habitat for Fungi 290 VII. Mycorrhizal Evolution Trends 295 Acknowledgements 298 References 298.
在此,我们根据现有的证据,从古植物学、形态学研究以及基于DNA系统发育分析的角度,对菌根真菌与根的协同进化进行评估。最早的苔藓类陆地植物出现在泥盆纪早期(4亿年前),甚至在根进化之前,就已经有类似泡囊-丛枝菌根(VAM)的内生菌根共生关系。菌根的进化过程是从内生菌丝体逐渐发展为平衡共生关系,在这种关系中,共生伙伴由于有限能量和营养资源的交换而相互依存。大多数菌根是互利共生的,但在某些情况下,植物对真菌控制增加的趋势最终导致了无叶绿素的菌异养植物的掠夺性菌根。外生菌根、石楠型菌根和兰科菌根,以及非菌根根,都是在白垩纪被子植物快速辐射时期进化而来的。据推测,根是从根状茎逐渐进化而来的,为菌根真菌提供了更适宜的栖息地,并为植物提供了复杂的分支结构,为叶片提供水分和养分。选择压力导致了不同类型菌根的根在形态上的差异。专性菌根植物的根皮层厚度和外皮层栓质化程度最大,而非菌根植物往往有细根,有更多的根毛和相对发达的化学防御机制。本文还讨论了主要的协同进化趋势以及不同根类型植物的相对成功情况。目录摘要275 一、引言276 二、菌根真菌276 三、菌根的起源279 四、现存和已灭绝植物的菌根共生关系282 五、根的进化288 六、作为真菌栖息地的根290 七、菌根进化趋势295 致谢298 参考文献298