Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Chih, Mexico.
Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico.
Molecules. 2024 Jan 4;29(1):275. doi: 10.3390/molecules29010275.
This work highlights the significant potential of marine toxins, particularly saxitoxin (STX) and its derivatives, in the exploration of novel pharmaceuticals. These toxins, produced by aquatic microorganisms and collected by bivalve mollusks and other filter-feeding organisms, offer a vast reservoir of chemical and biological diversity. They interact with sodium channels in physiological processes, affecting various functions in organisms. Exposure to these toxins can lead to symptoms ranging from tingling sensations to respiratory failure and cardiovascular shock, with STX being one of the most potent. The structural diversity of STX derivatives, categorized into carbamate, N-sulfocarbamoyl, decarbamoyl, and deoxydecarbamoyl toxins, offers potential for drug development. The research described in this work aimed to computationally characterize 18 STX derivatives, exploring their reactivity properties within marine sponges using conceptual density functional theory (CDFT) techniques. Additionally, their pharmacokinetic properties, bioavailability, and drug-likeness scores were assessed. The outcomes of this research were the chemical reactivity parameters calculated via CDFT as well as the estimated pharmacokinetic and ADME properties derived using computational tools. While they may not align directly, the integration of these distinct datasets enriches our comprehensive understanding of the compound's properties and potential applications. Thus, this study holds promise for uncovering new pharmaceutical candidates from the considered marine toxins.
这项工作强调了海洋毒素,特别是石房蛤毒素(STX)及其衍生物在探索新型药物方面的巨大潜力。这些毒素由水生微生物产生,并被双壳类软体动物和其他滤食性生物收集,提供了丰富的化学和生物多样性资源。它们在生理过程中与钠离子通道相互作用,影响生物体的各种功能。暴露于这些毒素可导致从刺痛感到呼吸衰竭和心血管休克等各种症状,而 STX 是其中最具毒性的一种。STX 衍生物的结构多样性可分为氨基甲酸酯、N-磺酰氨基甲酰基、脱羰基和脱氧脱羰基毒素,为药物开发提供了潜力。本工作旨在使用概念密度泛函理论(CDFT)技术计算表征 18 种 STX 衍生物,探索其在海洋海绵中的反应性特性。此外,还评估了它们的药代动力学特性、生物利用度和类药性评分。这项研究的结果是通过 CDFT 计算得出的化学反应性参数,以及使用计算工具估计的药代动力学和 ADME 特性。虽然它们之间可能没有直接的关联,但整合这些不同的数据集丰富了我们对化合物性质和潜在应用的全面理解。因此,这项研究有望从所考虑的海洋毒素中发现新的药物候选物。