Suppr超能文献

一种改进的用于金属结构件表面微裂纹检测的Mask R-CNN模型

An Improved Mask R-CNN Micro-Crack Detection Model for the Surface of Metal Structural Parts.

作者信息

Yang Fan, Huo Junzhou, Cheng Zhang, Chen Hao, Shi Yiting

机构信息

School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China.

出版信息

Sensors (Basel). 2023 Dec 22;24(1):62. doi: 10.3390/s24010062.

Abstract

Micro-crack detection is an essential task in critical equipment health monitoring. Accurate and timely detection of micro-cracks can ensure the healthy and stable service of equipment. Aiming at improving the low accuracy of the conventional target detection model during the task of detecting micro-cracks on the surface of metal structural parts, this paper built a micro-cracks dataset and explored a detection performance optimization method based on Mask R-CNN. Firstly, we improved the original FPN structure, adding a bottom-up feature fusion path to enhance the information utilization rate of the underlying feature layer. Secondly, we added the methods of deformable convolution kernel and attention mechanism to ResNet, which can improve the efficiency of feature extraction. Lastly, we modified the original loss function to optimize the network training effect and model convergence rate. The ablation comparison experiments shows that all the improvement schemes proposed in this paper have improved the performance of the original Mask R-CNN. The integration of all the improvement schemes can produce the most significant performance improvement effects in recognition, classification, and positioning simultaneously, thus proving the rationality and feasibility of the improved scheme in this paper.

摘要

微裂纹检测是关键设备健康监测中的一项重要任务。准确及时地检测微裂纹能够确保设备健康稳定运行。针对传统目标检测模型在金属结构件表面微裂纹检测任务中准确率较低的问题,本文构建了一个微裂纹数据集,并探索了一种基于Mask R-CNN的检测性能优化方法。首先,我们改进了原始的FPN结构,增加了一条自底向上的特征融合路径,以提高底层特征层的信息利用率。其次,我们在ResNet中添加了可变形卷积核和注意力机制的方法,这可以提高特征提取效率。最后,我们修改了原始损失函数,以优化网络训练效果和模型收敛速度。消融对比实验表明,本文提出的所有改进方案均提升了原始Mask R-CNN的性能。所有改进方案的集成能够在识别、分类和定位方面同时产生最显著的性能提升效果,从而证明了本文改进方案的合理性和可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5587/10780529/b1c800793c66/sensors-24-00062-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验