Suppr超能文献

一种集成CrackMover数据增强的用于裂缝检测的自动实例分割方法

An Automated Instance Segmentation Method for Crack Detection Integrated with CrackMover Data Augmentation.

作者信息

Zhao Mian, Xu Xiangyang, Bao Xiaohua, Chen Xiangsheng, Yang Hao

机构信息

School of Rail Transportation, Soochow University, Suzhou 215006, China.

College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518061, China.

出版信息

Sensors (Basel). 2024 Jan 11;24(2):446. doi: 10.3390/s24020446.

Abstract

Crack detection plays a critical role in ensuring road safety and maintenance. Traditional, manual, and semi-automatic detection methods have proven inefficient. Nowadays, the emergence of deep learning techniques has opened up new possibilities for automatic crack detection. However, there are few methods with both localization and segmentation abilities, and most perform poorly. The consistent nature of pavement over a small mileage range gives us the opportunity to make improvements. A novel data-augmentation strategy called CrackMover, specifically tailored for crack detection methods, is proposed. Experiments demonstrate the effectiveness of CrackMover for various methods. Moreover, this paper presents a new instance segmentation method for crack detection. It adopts a redesigned backbone network and incorporates a cascade structure for the region-based convolutional network (R-CNN) part. The experimental evaluation showcases significant performance improvements achieved by these approaches in crack detection. The proposed method achieves an average precision of 33.3%, surpassing Mask R-CNN with a Residual Network 50 backbone by 8.6%, proving its effectiveness in detecting crack distress.

摘要

裂缝检测在确保道路安全和维护方面起着至关重要的作用。传统的手动和半自动检测方法已被证明效率低下。如今,深度学习技术的出现为自动裂缝检测开辟了新的可能性。然而,具有定位和分割能力的方法很少,而且大多数方法表现不佳。路面在小里程范围内的一致性为我们提供了改进的机会。提出了一种专门为裂缝检测方法量身定制的名为CrackMover的新型数据增强策略。实验证明了CrackMover对各种方法的有效性。此外,本文提出了一种用于裂缝检测的新实例分割方法。它采用了重新设计的骨干网络,并为基于区域的卷积网络(R-CNN)部分引入了级联结构。实验评估展示了这些方法在裂缝检测中取得的显著性能提升。所提出的方法实现了33.3%的平均精度,比具有残差网络50骨干的Mask R-CNN高出8.6%,证明了其在检测裂缝病害方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bef0/10818670/84117ed39670/sensors-24-00446-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验