Suppr超能文献

基于近红外多光谱成像和回归建模结合特征选择估算杨树叶片生化色素含量。

Estimation of Biochemical Pigment Content in Poplar Leaves Using Proximal Multispectral Imaging and Regression Modeling Combined with Feature Selection.

机构信息

School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China.

School of Computing and Mathematics, College of Science and Engineering, University of Derby, Kedleston Road, Derby DE22 1GB, UK.

出版信息

Sensors (Basel). 2023 Dec 30;24(1):217. doi: 10.3390/s24010217.

Abstract

Monitoring the biochemical pigment contents in individual plants is crucial for assessing their health statuses and physiological states. Fast, low-cost measurements of plants' biochemical traits have become feasible due to advances in multispectral imaging sensors in recent years. This study evaluated the field application of proximal multispectral imaging combined with feature selection and regressive analysis to estimate the biochemical pigment contents of poplar leaves. The combination of 6 spectral bands and 26 vegetation indices (VIs) derived from the multispectral bands was taken as the group of initial variables for regression modeling. Three variable selection algorithms, including the forward selection algorithm with correlation analysis (CORR), recursive feature elimination algorithm (RFE), and sequential forward selection algorithm (SFS), were explored as candidate methods for screening combinations of input variables from the 32 spectral-derived initial variables. Partial least square regression (PLSR) and nonlinear support vector machine regression (SVR) were both applied to estimate total chlorophyll content (Chl) and carotenoid content (Car) at the leaf scale. The results show that the nonlinear SVR prediction model based on optimal variable combinations, selected by SFS using multiple scatter correction (MSC) preprocessing data, achieved the best estimation accuracy and stable prediction performance for the leaf pigment content. The Chl and Car models developed using the optimal model had R and RMSE predictive statistics of 0.849 and 0.825 and 5.116 and 0.869, respectively. This study demonstrates the advantages of using a nonlinear SVR model combined with SFS variable selection to obtain a more reliable estimation model for leaf biochemical pigment content.

摘要

监测单株植物的生化色素含量对于评估其健康状况和生理状态至关重要。近年来,多光谱成像传感器的进步使得快速、低成本测量植物的生化特性成为可能。本研究评估了近地多光谱成像与特征选择和回归分析相结合,以估算杨树叶片生化色素含量的田间应用。将 6 个光谱波段和 26 个植被指数(VIs)组合作为回归建模的初始变量组。采用三种变量选择算法,包括带有相关分析的前向选择算法(CORR)、递归特征消除算法(RFE)和顺序前向选择算法(SFS),探索从 32 个光谱衍生初始变量中筛选输入变量组合的候选方法。偏最小二乘回归(PLSR)和非线性支持向量机回归(SVR)都被应用于估计叶片水平的总叶绿素含量(Chl)和类胡萝卜素含量(Car)。结果表明,基于 SFS 使用多元散射校正(MSC)预处理数据选择的最优变量组合的非线性 SVR 预测模型,对叶片色素含量具有最佳的估计精度和稳定的预测性能。使用最优模型开发的 Chl 和 Car 模型的 R 和 RMSE 预测统计数据分别为 0.849 和 0.825 以及 5.116 和 0.869。本研究证明了使用非线性 SVR 模型结合 SFS 变量选择获得更可靠的叶片生化色素含量估计模型的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67e0/10781383/d341014e7361/sensors-24-00217-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验