Suppr超能文献

开发一种将二维图像转换为三维身体数据的非接触式传感器系统:一种用于监测 20 多岁和 30 多岁个体肥胖和体型的深度学习方法。

Development of a Non-Contact Sensor System for Converting 2D Images into 3D Body Data: A Deep Learning Approach to Monitor Obesity and Body Shape in Individuals in Their 20s and 30s.

机构信息

Center for Sports and Performance Analysis, Korea National Sport University, Songpa-gu, Seoul 05541, Republic of Korea.

Department of Information & Communication Engineering, Kangwon National University, Samcheok 25913, Gangwon-do, Republic of Korea.

出版信息

Sensors (Basel). 2024 Jan 2;24(1):270. doi: 10.3390/s24010270.

Abstract

This study demonstrates how to generate a three-dimensional (3D) body model through a small number of images and derive body values similar to the actual values using generated 3D body data. In this study, a 3D body model that can be used for body type diagnosis was developed using two full-body pictures of the front and side taken with a mobile phone. For data training, 400 3D body datasets (male: 200, female: 200) provided by Size Korea were used, and four models, i.e., 3D recurrent reconstruction neural network, point cloud generative adversarial network, skinned multi-person linear model, and pixel-aligned impact function for high-resolution 3D human digitization, were used. The models proposed in this study were analyzed and compared. A total of 10 men and women were analyzed, and their corresponding 3D models were verified by comparing 3D body data derived from 2D image inputs with those obtained using a body scanner. The model was verified through the difference between 3D data derived from the 2D image and those derived using an actual body scanner. Unlike the 3D generation models that could not be used to derive the body values in this study, the proposed model was successfully used to derive various body values, indicating that this model can be implemented to identify various body types and monitor obesity in the future.

摘要

本研究展示了如何通过少量图像生成三维(3D)人体模型,并使用生成的 3D 人体数据推导出与实际值相似的人体值。在本研究中,使用手机拍摄的正面和侧面全身照片开发了一种可用于体型诊断的 3D 人体模型。在数据训练方面,使用了来自 Size Korea 的 400 个 3D 人体数据集(男性:200,女性:200),并使用了四种模型,即 3D 递归重建神经网络、点云生成对抗网络、带皮肤的多人线性模型和用于高分辨率 3D 人体数字化的像素对齐影响函数。对本研究中提出的模型进行了分析和比较。共分析了 10 名男性和女性,通过将从 2D 图像输入中得出的 3D 人体数据与使用人体扫描仪获得的数据进行比较,验证了相应的 3D 模型。通过比较从 2D 图像中得出的 3D 数据与使用实际人体扫描仪得出的数据之间的差异,验证了该模型。与本研究中无法用于推导出人体值的 3D 生成模型不同,所提出的模型成功地用于推导出各种人体值,这表明该模型可以用于识别各种体型并在未来监测肥胖。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e53f/10781262/67afc9871255/sensors-24-00270-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验