Suppr超能文献

基于光学传感器的肥胖检测方法:步态分析、姿势估计和人体体素建模的文献综述

Optical Sensor-Based Approaches in Obesity Detection: A Literature Review of Gait Analysis, Pose Estimation, and Human Voxel Modeling.

作者信息

Dhaouadi Sabrine, Khelifa Mohamed Moncef Ben, Balti Ala, Duché Pascale

机构信息

J-AP2S "Laboratoire Jeunesse-Activité Physique et Sportive-Santé", Université de Toulon, Campus La Garde, 83062 Toulon, France.

出版信息

Sensors (Basel). 2025 Jul 25;25(15):4612. doi: 10.3390/s25154612.

Abstract

Optical sensor technologies are reshaping obesity detection by enabling non-invasive, dynamic analysis of biomechanical and morphological biomarkers. This review synthesizes recent advances in three key areas: optical gait analysis, vision-based pose estimation, and depth-sensing voxel modeling. Gait analysis leverages optical sensor arrays and video systems to identify obesity-specific deviations, such as reduced stride length and asymmetric movement patterns. Pose estimation algorithms-including markerless frameworks like OpenPose and MediaPipe-track kinematic patterns indicative of postural imbalance and altered locomotor control. Human voxel modeling reconstructs 3D body composition metrics, such as waist-hip ratio, through infrared-depth sensing, offering precise, contactless anthropometry. Despite their potential, challenges persist in sensor robustness under uncontrolled environments, algorithmic biases in diverse populations, and scalability for widespread deployment in existing health workflows. Emerging solutions such as federated learning and edge computing aim to address these limitations by enabling multimodal data harmonization and portable, real-time analytics. Future priorities involve standardizing validation protocols to ensure reproducibility, optimizing cost-efficacy for scalable deployment, and integrating optical systems with wearable technologies for holistic health monitoring. By shifting obesity diagnostics from static metrics to dynamic, multidimensional profiling, optical sensing paves the way for scalable public health interventions and personalized care strategies.

摘要

光学传感器技术正在重塑肥胖检测方式,它能够对生物力学和形态学生物标志物进行非侵入性动态分析。本综述总结了三个关键领域的最新进展:光学步态分析、基于视觉的姿态估计和深度感应体素建模。步态分析利用光学传感器阵列和视频系统来识别肥胖特有的偏差,比如步幅缩短和不对称运动模式。姿态估计算法,包括像OpenPose和MediaPipe这样的无标记框架,可追踪表明姿势失衡和运动控制改变的运动模式。人体体素建模通过红外深度感应重建三维身体成分指标,如腰臀比,提供精确的非接触式人体测量。尽管具有潜力,但在不受控制的环境下,传感器的稳健性、不同人群中的算法偏差以及在现有健康工作流程中广泛部署的可扩展性等挑战依然存在。诸如联邦学习和边缘计算等新兴解决方案旨在通过实现多模态数据协调以及便携式实时分析来解决这些限制。未来的重点包括标准化验证协议以确保可重复性、优化成本效益以实现可扩展部署,以及将光学系统与可穿戴技术集成以进行全面健康监测。通过将肥胖诊断从静态指标转变为动态、多维分析,光学传感为可扩展的公共卫生干预措施和个性化护理策略铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c713/12349618/cbfb9bb8112a/sensors-25-04612-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验