Suppr超能文献

使用调频连续波雷达和机器学习评估青少年的腰臀比。

Evaluating waist-to-hip ratio in youth using frequency-modulated continuous wave radar and machine learning.

作者信息

Park Jun Byung, Choi Jinjoo, Na Jae Yoon, Kim Seung Hyun, Park Hyun-Kyung, Yang Seung, Cho Sung Ho

机构信息

Department of Electronic Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.

Department of Pediatrics, Hanyang University College of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.

出版信息

Sci Rep. 2025 Jan 31;15(1):3911. doi: 10.1038/s41598-025-88098-x.

Abstract

Waist-to-hip ratio (WHR) is an essential predictor of cardiometabolic diseases, but traditional tape-based WHR measurements in children and adolescents can cause discomfort due to direct contact and are prone to measurer variation. This study aimed to develop a non-invasive, precise, and convenient alternative for WHR measurement and central obesity assessment using frequency modulated continuous wave (FMCW) radar, and to evaluate its accuracy by comparing it with traditional measurement methods. We included 100 participants aged 7-18 and radar data were analyzed using point cloud generation processed through convolutional neural networks for estimating WHR. The radar-based WHR measurements were compared to conventional clinician measurements. Participants were classified into low (WHR < 0.86), moderate (≥ 0.86, < 0.91) and high WHR (≥ 0.91) groups, and the classifications were compared. Strong agreement was observed between the two methods, with an intraclass correlation coefficient of 0.83 (p = 0.023995). The radar system achieved 82% accuracy in classifying participants into the correct abdominal obesity risk groups. Our findings demonstrate that FMCW radar can be a reliable tool for routine monitoring of central obesity. This technology addresses concerns about privacy and discomfort, making it suitable for widespread application in both clinical and non-clinical settings.

摘要

腰臀比(WHR)是心脏代谢疾病的重要预测指标,但传统的基于卷尺的儿童和青少年WHR测量方法因直接接触会导致不适,且容易受到测量者差异的影响。本研究旨在开发一种使用调频连续波(FMCW)雷达进行WHR测量和中心性肥胖评估的非侵入性、精确且便捷的替代方法,并通过与传统测量方法比较来评估其准确性。我们纳入了100名7至18岁的参与者,并使用通过卷积神经网络处理的点云生成技术分析雷达数据以估计WHR。将基于雷达的WHR测量结果与传统临床医生测量结果进行比较。参与者被分为低WHR组(WHR < 0.86)、中度WHR组(≥ 0.86,< 0.91)和高WHR组(≥ 0.91),并对分类结果进行比较。两种方法之间观察到高度一致性,组内相关系数为0.83(p = 0.023995)。雷达系统在将参与者正确分类到腹部肥胖风险组方面的准确率达到82%。我们的研究结果表明,FMCW雷达可以成为中心性肥胖常规监测的可靠工具。这项技术解决了隐私和不适方面的问题,使其适用于临床和非临床环境中的广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63df/11785933/601ceb2852a1/41598_2025_88098_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验