文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

三维肿瘤模型中高热纳米药物筛选的研究进展。

Advances in screening hyperthermic nanomedicines in 3D tumor models.

机构信息

Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.

Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.

出版信息

Nanoscale Horiz. 2024 Feb 26;9(3):334-364. doi: 10.1039/d3nh00305a.


DOI:10.1039/d3nh00305a
PMID:38204336
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10896258/
Abstract

Hyperthermic nanomedicines are particularly relevant for tackling human cancer, providing a valuable alternative to conventional therapeutics. The early-stage preclinical performance evaluation of such anti-cancer treatments is conventionally performed in flat 2D cell cultures that do not mimic the volumetric heat transfer occurring in human tumors. Recently, improvements in bioengineered 3D models have unlocked the opportunity to recapitulate major tumor microenvironment hallmarks and generate highly informative readouts that can contribute to accelerating the discovery and validation of efficient hyperthermic treatments. Leveraging on this, herein we aim to showcase the potential of engineered physiomimetic 3D tumor models for evaluating the preclinical efficacy of hyperthermic nanomedicines, featuring the main advantages and design considerations under diverse testing scenarios. The most recent applications of 3D tumor models for screening photo- and/or magnetic nanomedicines will be discussed, either as standalone systems or in combinatorial approaches with other anti-cancer therapeutics. We envision that breakthroughs toward developing multi-functional 3D platforms for hyperthermia onset and follow-up will contribute to a more expedited discovery of top-performing hyperthermic therapies in a preclinical setting before their screening.

摘要

高热纳米医学在治疗人类癌症方面具有重要意义,为传统疗法提供了一种有价值的替代方法。此类抗癌治疗的早期临床前性能评估通常在平面 2D 细胞培养物中进行,这些培养物无法模拟人类肿瘤中发生的体积传热。最近,生物工程 3D 模型的改进为重现主要肿瘤微环境特征并生成高度信息丰富的读数提供了机会,这些读数有助于加速高效高热治疗的发现和验证。有鉴于此,本文旨在展示工程化生理模拟 3D 肿瘤模型在评估高热纳米医学临床前疗效方面的潜力,重点介绍在不同测试场景下的主要优势和设计考虑因素。还将讨论 3D 肿瘤模型在筛选光热和/或磁纳米医学方面的最新应用,无论是作为独立系统还是与其他抗癌疗法联合应用。我们设想,朝着开发多功能 3D 平台以实现高热的起始和后续发展的突破,将有助于在临床前环境中更快速地发现表现最佳的高热疗法,从而在筛选前进行跟进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/d142df69ea4d/d3nh00305a-p6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/8ce159d21fb6/d3nh00305a-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/fd54f7f54b63/d3nh00305a-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/e7f080ab7eda/d3nh00305a-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/c536c155d8ae/d3nh00305a-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/745ce62d0446/d3nh00305a-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/6e9cdd06ca5f/d3nh00305a-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/b48297a8c198/d3nh00305a-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/e6a62a5df922/d3nh00305a-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/36ddb6126460/d3nh00305a-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/77397b39593c/d3nh00305a-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/5a984002f2c7/d3nh00305a-p4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/0800b4a0ee72/d3nh00305a-p5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/d142df69ea4d/d3nh00305a-p6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/8ce159d21fb6/d3nh00305a-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/fd54f7f54b63/d3nh00305a-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/e7f080ab7eda/d3nh00305a-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/c536c155d8ae/d3nh00305a-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/745ce62d0446/d3nh00305a-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/6e9cdd06ca5f/d3nh00305a-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/b48297a8c198/d3nh00305a-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/e6a62a5df922/d3nh00305a-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/36ddb6126460/d3nh00305a-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/77397b39593c/d3nh00305a-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/5a984002f2c7/d3nh00305a-p4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/0800b4a0ee72/d3nh00305a-p5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f74d/10896258/d142df69ea4d/d3nh00305a-p6.jpg

相似文献

[1]
Advances in screening hyperthermic nanomedicines in 3D tumor models.

Nanoscale Horiz. 2024-2-26

[2]
Design of spherically structured 3D in vitro tumor models -Advances and prospects.

Acta Biomater. 2018-5-23

[3]
The importance of spheroids in analyzing nanomedicine efficacy.

Nanomedicine (Lond). 2020-6

[4]
In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening.

Acta Biomater. 2019-6-12

[5]
Advances in bioengineering pancreatic tumor-stroma physiomimetic Biomodels.

Biomaterials. 2022-8

[6]
Screening of dual chemo-photothermal cellular nanotherapies in organotypic breast cancer 3D spheroids.

J Control Release. 2021-3-10

[7]
Three-dimensional culture models: emerging platforms for screening the antitumoral efficacy of nanomedicines.

Nanomedicine (Lond). 2023-3

[8]
In Vitro and In Vivo Tumor Models for the Evaluation of Anticancer Nanoparticles.

Adv Exp Med Biol. 2021

[9]
Could 3D models of cancer enhance drug screening?

Biomaterials. 2020-2

[10]
Stratified 3D Microtumors as Organotypic Testing Platforms for Screening Pancreatic Cancer Therapies.

Small Methods. 2021-5

引用本文的文献

[1]
Advanced microfluidic systems with temperature modulation for biological applications.

Biomicrofluidics. 2025-5-1

[2]
Unveiling Nanoparticles: Recent Approaches in Studying the Internalization Pattern of Iron Oxide Nanoparticles in Mono- and Multicellular Biological Structures.

J Funct Biomater. 2024-6-19

[3]
Growing Role of 3D In Vitro Cell Cultures in the Study of Cellular and Molecular Mechanisms: Short Focus on Breast Cancer, Endometriosis, Liver and Infectious Diseases.

Cells. 2024-6-18

本文引用的文献

[1]
Standardization of Studies for Plasmonic Photothermal therapy.

ACS Nanosci Au. 2023-7-17

[2]
Trends in Photopolymerizable Bioinks for 3D Bioprinting of Tumor Models.

JACS Au. 2023-8-11

[3]
Heterotypic tumor spheroids: a platform for nanomedicine evaluation.

J Nanobiotechnology. 2023-8-2

[4]
Magnetic self-assembly of 3D multicellular microscaffolds: A biomimetic brain tumor-on-a-chip for drug delivery and selectivity testing.

APL Bioeng. 2023-7-24

[5]
A 3D Approach Using a Control Algorithm to Minimize the Effects on the Healthy Tissue in the Hyperthermia for Cancer Treatment.

Entropy (Basel). 2023-4-19

[6]
Intratumor heterogeneity and cell secretome promote chemotherapy resistance and progression of colorectal cancer.

Cell Death Dis. 2023-5-5

[7]
Combination Therapy of Radiation and Hyperthermia, Focusing on the Synergistic Anti-Cancer Effects and Research Trends.

Antioxidants (Basel). 2023-4-13

[8]
3D bioprinting complex models of cancer.

Biomater Sci. 2023-5-16

[9]
Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments.

Mol Cancer. 2023-3-11

[10]
Recent Advances on Cell Culture Platforms for In Vitro Drug Screening and Cell Therapies: From Conventional to Microfluidic Strategies.

Adv Healthc Mater. 2023-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索