文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于网络药理学和实验验证探索益脑复健方对缺血性脑卒中的分子机制

Exploring the molecular mechanism of Yinao Fujian formula on ischemic stroke based on network pharmacology and experimental verification.

作者信息

Lu Jing, Tang Xiaolei, Zhang Yuxin, Chu Hongbo, Jing Chenxu, Wang Yufeng, Lou Huijuan, Zhu Ziqi, Zhao Daqing, Sun Liwei, Cong Deyu

机构信息

Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China.

Department of Tuina, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China.

出版信息

Heliyon. 2023 Dec 16;10(1):e23742. doi: 10.1016/j.heliyon.2023.e23742. eCollection 2024 Jan 15.


DOI:10.1016/j.heliyon.2023.e23742
PMID:38205280
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10776953/
Abstract

BACKGROUND: Ischemic stroke (IS) is a leading cause of long-term disability and even mortality, threatening people's lives. Yinao Fujian (YNFJ) formula is a Traditional Chinese Medicine formula that has been widely used to treat patients with IS. However, the molecular mechanism of YNFJ for the treatment of IS is still elusive. Our study aimed to explore the potential protective effect and the underlying mechanisms of YNFJ on IS using a network pharmacology approach coupled with experimental validation. MATERIALS AND METHODS: Effective compounds of YNFJ were collected from BATMAN-TCM and TCMSP databases, while IS targets were obtained from GeneCards, OMIM, TTD and DrugBank databases. The protein-protein interaction (PPI) network was constructed to further screen the hub targets of YNFJ in IS treatment. GO and KEGG enrichment analyses were used to identify the critical biological processes and signaling pathways of YNFJ for IS. Moreover, Nissl staining, HE, TTC staining and Tunel staining were used in the MCAO model to prove the neuroprotective effect of YNFJ. Oxidative damage, inflammatory factor release and related pathways were tested in MCAO rat model and hypoxia-induced BV2 cell model, respectively. RESULTS: We found that YNFJ treatment significantly alleviated MCAO-induced nerve damage and apoptosis. Then, network pharmacology screening combined with literature research revealed IL6, TNF, PTGS2, NFKBIA and NFE2L2 as the critical targets in a PPI network. Moreover, the top 20 signaling pathways and biological processes associated with the protective effects of YNFJ on IS were enriched through GO and KEGG analyses. Further analysis indicated that NF-κB and Nrf2/HO-1 signaling pathways might be highly involved in the protective effects of YNFJ on IS. Finally, and experiments confirmed that YNFJ inhibited the release of inflammatory factors (IL-6 and TNF-α) and MDA content, and increased the activity of SOD. In terms of the mechanism, YNFJ inhibited the release of inflammatory factors by suppressing the NF-κB pathway and decreased the expression of iNOS and COX-2 to protect microglia from inflammation damage. In addition, YNFJ initiated the dissociation of Keap-1 and Nrf2, and activated the downstream protein HO-1, NQO1, thus decreasing oxidative stress. CONCLUSION: Taken together, the findings in our research showed that the protective effects of YNFJ on IS were mainly achieved by regulating the NF-κB and Nrf2/HO-1 signaling pathways to inhibit oxidative stress damage and inflammatory damage of microglia.

摘要

背景:缺血性中风(IS)是导致长期残疾甚至死亡的主要原因,威胁着人们的生命。益脑复健(YNFJ)方剂是一种广泛用于治疗IS患者的中药方剂。然而,YNFJ治疗IS的分子机制仍不清楚。我们的研究旨在通过网络药理学方法结合实验验证,探讨YNFJ对IS的潜在保护作用及其潜在机制。 材料与方法:从BATMAN-TCM和TCMSP数据库收集YNFJ的有效成分,从GeneCards、OMIM、TTD和DrugBank数据库获取IS靶点。构建蛋白质-蛋白质相互作用(PPI)网络,以进一步筛选YNFJ在IS治疗中的核心靶点。采用GO和KEGG富集分析来确定YNFJ治疗IS的关键生物学过程和信号通路。此外,在大脑中动脉闭塞(MCAO)模型中使用尼氏染色、苏木精-伊红(HE)染色、TTC染色和Tunel染色来证明YNFJ的神经保护作用。分别在MCAO大鼠模型和缺氧诱导的BV2细胞模型中检测氧化损伤、炎症因子释放及相关通路。 结果:我们发现YNFJ治疗显著减轻了MCAO诱导的神经损伤和细胞凋亡。然后,网络药理学筛选结合文献研究揭示白细胞介素6(IL6)、肿瘤坏死因子(TNF)、前列腺素内过氧化物合酶2(PTGS2)、核因子κB抑制因子α(NFKBIA)和核因子E2相关因子2(NFE2L2)是PPI网络中的关键靶点。此外,通过GO和KEGG分析富集了与YNFJ对IS的保护作用相关的前20条信号通路和生物学过程。进一步分析表明,核因子κB(NF-κB)和核因子E2相关因子2/血红素加氧酶-1(Nrf2/HO-1)信号通路可能高度参与YNFJ对IS的保护作用。最后,实验证实YNFJ抑制炎症因子(IL-6和TNF-α)的释放和丙二醛(MDA)含量,并提高超氧化物歧化酶(SOD)的活性。在机制方面,YNFJ通过抑制NF-κB通路抑制炎症因子的释放,并降低诱导型一氧化氮合酶(iNOS)和环氧化酶-2(COX-2)的表达,以保护小胶质细胞免受炎症损伤。此外,YNFJ引发 Kelch样ECH相关蛋白1(Keap-1)和Nrf2的解离,并激活下游蛋白HO-1、醌氧化还原酶1(NQO1),从而降低氧化应激。 结论:综上所述,我们的研究结果表明,YNFJ对IS的保护作用主要是通过调节NF-κB和Nrf2/HO-1信号通路来抑制小胶质细胞的氧化应激损伤和炎症损伤实现的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1f/10776953/edea0f422f38/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1f/10776953/17717db5d163/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1f/10776953/b4b584048f2e/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1f/10776953/9cc175537be6/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1f/10776953/99d025276a0b/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1f/10776953/56a4d80fcf78/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1f/10776953/41fa15e6c7a6/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1f/10776953/08d7089d5e70/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1f/10776953/ae48a8f0ae26/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1f/10776953/74ffe2e39755/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1f/10776953/3a0c3530b901/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1f/10776953/edea0f422f38/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1f/10776953/17717db5d163/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1f/10776953/b4b584048f2e/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1f/10776953/9cc175537be6/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1f/10776953/99d025276a0b/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1f/10776953/56a4d80fcf78/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1f/10776953/41fa15e6c7a6/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1f/10776953/08d7089d5e70/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1f/10776953/ae48a8f0ae26/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1f/10776953/74ffe2e39755/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1f/10776953/3a0c3530b901/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1f/10776953/edea0f422f38/gr11.jpg

相似文献

[1]
Exploring the molecular mechanism of Yinao Fujian formula on ischemic stroke based on network pharmacology and experimental verification.

Heliyon. 2023-12-16

[2]
Mechanism of Sanhua Decoction in the Treatment of Ischemic Stroke Based on Network Pharmacology Methods and Experimental Verification.

Biomed Res Int. 2022

[3]
Network pharmacology-based study on the mechanism of ShenKang injection in diabetic kidney disease through Keap1/Nrf2/Ho-1 signaling pathway.

Phytomedicine. 2023-9

[4]
Mechanism of decoction in treatment of diabetic kidney disease based on network pharmacology and molecular docking.

Front Pharmacol. 2022-10-28

[5]
Network pharmacology-based prediction and validation of the active ingredients and potential mechanisms of the Huangxiong formula for treating ischemic stroke.

J Ethnopharmacol. 2023-8-10

[6]
[Mechanism of Xuebijing Injection in treatment of sepsis-associated ARDS based on network pharmacology and in vitro experiment].

Zhongguo Zhong Yao Za Zhi. 2023-6

[7]
Jingfang granule alleviates Pseudomonas aeruginosa-induced acute lung inflammation through suppression of STAT3/IL-17/NF-κB pathway based on network pharmacology analysis and experimental validation.

J Ethnopharmacol. 2024-1-10

[8]
[Effect and mechanism of Jingqi Yukui Capsules on gastric ulcer mucosa healing quality: based on network pharmacology and animal experiment].

Zhongguo Zhong Yao Za Zhi. 2022-3

[9]
Molecular Mechanism of Epimedium Extract against Ischemic Stroke Based on Network Pharmacology and Experimental Validation.

Oxid Med Cell Longev. 2022

[10]
Network pharmacology analysis combined with experimental validation to explore the therapeutic mechanism of Schisandra Chinensis Mixture on diabetic nephropathy.

J Ethnopharmacol. 2023-2-10

引用本文的文献

[1]
Integrating network pharmacology and experimental verification to explore the protective effects of Evodia rutaecarpa in ischemic stroke.

PLoS One. 2025-6-27

[2]
Exploring the mechanism of Suxin Hugan Fang in treating ulcerative colitis based on network pharmacology.

Sci Rep. 2024-11-8

[3]
Nrf2-Keap1 in Cardiovascular Disease: Which Is the Cart and Which the Horse?

Physiology (Bethesda). 2024-9-1

本文引用的文献

[1]
Ginsenoside Rb1 from Suppressed TNF-α-Induced Matrix Metalloproteinase-9 via the Suppression of Double-Strand RNA-Dependent Protein Kinase (PKR)/NF-κB Pathway.

Molecules. 2022-11-19

[2]
Nrf2-Dependent Protective Effect of Paeoniflorin on α-Naphthalene Isothiocyanate-Induced Hepatic Injury.

Am J Chin Med. 2022

[3]
Glymphatic Drainage Blocking Aggravates Brain Edema, Neuroinflammation Modulating TNF-α, IL-10, and AQP4 After Intracerebral Hemorrhage in Rats.

Front Cell Neurosci. 2021-12-17

[4]
Raddeanin A induced apoptosis of non-small cell lung cancer cells by promoting ROS-mediated STAT3 inactivation.

Tissue Cell. 2021-8

[5]
Recent Insights Into the Protective Mechanisms of Paeoniflorin in Neurological, Cardiovascular, and Renal Diseases.

J Cardiovasc Pharmacol. 2021-6-1

[6]
Sinomenine activation of Nrf2 signaling prevents inflammation and cerebral injury in a mouse model of ischemic stroke.

Exp Ther Med. 2021-6

[7]
ΜicroRNA-122 protects against ischemic stroke by targeting Maf1.

Exp Ther Med. 2021-6

[8]
The Methyl Ester of 2-Cyano-3,12-Dioxooleana-1,9-Dien-28-Oic Acid Reduces Endometrial Lesions Development by Modulating the NFkB and Nrf2 Pathways.

Int J Mol Sci. 2021-4-13

[9]
Upregulation of Extracellular Vesicles-Encapsulated miR-132 Released From Mesenchymal Stem Cells Attenuates Ischemic Neuronal Injury by Inhibiting Smad2/c-jun Pathway Acvr2b Suppression.

Front Cell Dev Biol. 2021-3-8

[10]
TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches.

Chin J Nat Med. 2021-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索