Emanuele Enzo, Minoretti Piercarlo
Occupational Health, 2E Science, Robbio, ITA.
Occupational Health, Studio Minoretti, Oggiono, ITA.
Cureus. 2023 Dec 11;15(12):e50308. doi: 10.7759/cureus.50308. eCollection 2023 Dec.
In early 2023, the National Institutes of Health (NIH) implemented its Data Management and Sharing (DMS) Policy, requiring researchers to share scientific data produced with NIH funding. The policy's objective is to amplify the benefits of public investment in research by promoting the dissemination and reusability of primary data. Given this backdrop, identifying a robust methodology to assess the impact of data sharing across diverse research domains is essential. In this review, we adopted two methodological paradigms, the bottom-up and top-down strategies, and employed content analysis to pinpoint established methodologies and innovative practices within this intricate field. Although numerous author-level metrics are available to gauge the impact of data sharing, their application is still limited. Non-traditional metrics, encompassing economic (e.g., cost savings) and intangible benefits, presently appear to hold more potential for evaluating the impact of primary data sharing. Finally, we address the primary obstacles encountered by open data policies and introduce an innovative "Shared model for shared data" framework to bolster data sharing practices and refine evaluation metrics.
2023年初,美国国立卫生研究院(NIH)实施了其数据管理与共享(DMS)政策,要求研究人员共享由NIH资助产生的科学数据。该政策的目标是通过促进原始数据的传播和可重用性,扩大公共研究投资的效益。在此背景下,确定一种强大的方法来评估跨不同研究领域的数据共享影响至关重要。在本综述中,我们采用了两种方法论范式,即自下而上和自上而下策略,并运用内容分析来确定这一复杂领域内既定的方法和创新实践。尽管有许多作者层面的指标可用于衡量数据共享的影响,但其应用仍然有限。包括经济(如成本节约)和无形效益在内的非传统指标目前似乎在评估原始数据共享影响方面更具潜力。最后,我们讨论了开放数据政策遇到的主要障碍,并引入了一个创新的“共享数据共享模型”框架,以加强数据共享实践并完善评估指标。