Suppr超能文献

数据指数:一种衡量作者影响力的数据指标,可激励数据共享。

The data-index: An author-level metric that values impactful data and incentivizes data sharing.

作者信息

Hood Amelia S C, Sutherland William J

机构信息

Conservation Science Group, Department of Zoology University of Cambridge Cambridge UK.

Biosecurity Research Initiative at St Catharine's (BioRISC), St Catharine's College University of Cambridge Cambridge UK.

出版信息

Ecol Evol. 2021 Oct 13;11(21):14344-14350. doi: 10.1002/ece3.8126. eCollection 2021 Nov.

Abstract

Author-level metrics are a widely used measure of scientific success. The h-index and its variants measure publication output (number of publications) and research impact (number of citations). They are often used to influence decisions, such as allocating funding or jobs. Here, we argue that the emphasis on publication output and impact hinders scientific progress in the fields of ecology and evolution because it disincentivizes two fundamental practices: generating impactful (and therefore often long-term) datasets and sharing data. We describe a new author-level metric, the data-index, which values both dataset output (number of datasets) and impact (number of data-index citations), so promotes generating and sharing data as a result. We discuss how it could be implemented and provide user guidelines. The data-index is designed to complement other metrics of scientific success, as scientific contributions are diverse and our value system should reflect that both for the benefit of scientific progress and to create a value system that is more equitable, diverse, and inclusive. Future work should focus on promoting other scientific contributions, such as communicating science, informing policy, mentoring other scientists, and providing open-access code and tools.

摘要

作者层面的指标是衡量科研成就的一种广泛使用的方法。h指数及其变体衡量的是发表成果(论文发表数量)和研究影响力(被引次数)。它们常被用于影响诸如资金分配或职位安排等决策。在此,我们认为,对发表成果和影响力的强调阻碍了生态学和进化领域的科学进步,因为它抑制了两种基本做法:生成有影响力(因而往往是长期的)数据集以及共享数据。我们描述了一种新的作者层面的指标——数据指数,它既重视数据集产出(数据集数量)又重视影响力(数据指数被引次数),因此能促进数据的生成和共享。我们讨论了它的实施方式并提供了用户指南。数据指数旨在补充其他科研成就指标,因为科研贡献是多样的,我们的价值体系应该反映这一点,这既有利于科学进步,也有助于创建一个更公平、更多样化和更具包容性的价值体系。未来的工作应侧重于促进其他科研贡献,如传播科学知识、为政策提供信息、指导其他科学家以及提供开放获取的代码和工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2f1/8571609/8a35b3b5934a/ECE3-11-14344-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验