Department of Social and Behavioral Science, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA.
Department of Social and Behavioral Science, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA.
Soc Sci Med. 2023 May;325:115895. doi: 10.1016/j.socscimed.2023.115895. Epub 2023 Apr 11.
Over the past 20 years, the National Institutes for Health (NIH) has implemented several policies designed to improve sharing of research data, such as the NIH public access policy for publications, NIH genomic data sharing policy, and National Cancer Institute (NCI) Cancer Moonshot public access and data sharing policy. In January 2023, a new NIH data sharing policy has gone into effect, requiring researchers to submit a Data Management and Sharing Plan in proposals for NIH funding (NIH. Supplemental information to the, 2020b; NIH. Final policy for data, 2020a). These policies are based on the idea that sharing data is a key component of the scientific method, as it enables the creation of larger data repositories that can lead to research questions that may not be possible in individual studies (Alter and Gonzalez, 2018; Jwa and Poldrack, 2022), allows enhanced collaboration, and maximizes the federal investment in research. Important questions that we must consider as data sharing is expanded are to whom do benefits of data sharing accrue and to whom do benefits not accrue? In an era of growing efforts to engage diverse communities in research, we must consider the impact of data sharing for all research participants and the communities that they represent. We examine the issue of data sharing through a community-engaged research lens, informed by a long-standing partnership between community-engaged researchers and a key community health organization (Kruse et al., 2022). We contend that without effective community engagement and rich contextual knowledge, biases resulting from data sharing can remain unchecked. We provide several recommendations that would allow better community engagement related to data sharing to ensure both community and researcher understanding of the issues involved and move toward shared benefits. By identifying good models for evaluating the impact of data sharing on communities that contribute data, and then using those models systematically, we will advance the consideration of the community perspective and increase the likelihood of benefits for all.
在过去的 20 年里,美国国立卫生研究院 (NIH) 实施了几项旨在改善研究数据共享的政策,例如 NIH 出版物公开获取政策、NIH 基因组数据共享政策以及美国国家癌症研究所 (NCI) 癌症登月计划公开获取和数据共享政策。2023 年 1 月,一项新的 NIH 数据共享政策生效,要求研究人员在 NIH 资助提案中提交数据管理和共享计划 (NIH. 补充信息到,2020b;NIH. 数据最终政策,2020a)。这些政策基于这样一种观点,即数据共享是科学方法的关键组成部分,因为它使创建更大的数据存储库成为可能,从而可以提出可能在单个研究中无法提出的研究问题 (Alter 和 Gonzalez,2018 年;Jwa 和 Poldrack,2022 年),允许增强协作,并最大限度地提高联邦对研究的投资。随着数据共享的扩大,我们必须考虑的重要问题是数据共享的收益归谁所有,以及谁没有收益。在一个越来越努力让不同社区参与研究的时代,我们必须考虑数据共享对所有研究参与者及其代表的社区的影响。我们通过社区参与研究的视角来审视数据共享问题,这得益于社区参与研究人员和一个重要的社区健康组织之间的长期合作关系 (Kruse 等人,2022 年)。我们认为,如果没有有效的社区参与和丰富的背景知识,数据共享产生的偏见就无法得到控制。我们提出了一些建议,这些建议将允许更好地进行与数据共享相关的社区参与,以确保社区和研究人员都能理解所涉及的问题,并朝着共同受益的方向发展。通过确定评估对提供数据的社区的数据共享影响的良好模型,然后系统地使用这些模型,我们将推进对社区视角的考虑,并增加对所有人都有益的可能性。