Suppr超能文献

用于治疗复杂感染的一氧化氮供体型前药。

Nitric oxide-releasing prodrug for the treatment of complex infections.

机构信息

Vast Therapeutics, Durham, North Carolina, USA.

Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

出版信息

Antimicrob Agents Chemother. 2024 Feb 7;68(2):e0132723. doi: 10.1128/aac.01327-23. Epub 2024 Jan 11.

Abstract

Non-tuberculosis mycobacteria (NTM) can cause severe respiratory infection in patients with underlying pulmonary conditions, and these infections are extremely difficult to treat. In this report, we evaluate a nitric oxide (NO)-releasing prodrug [methyl tris diazeniumdiolate (MD3)] against a panel of NTM clinical isolates and as a treatment for acute and chronic NTM infections . Its efficacy in inhibiting growth or killing mycobacteria was explored alongside evaluation of the impact to primary human airway epithelial tissue. Airway epithelial tissues remained viable after exposure at concentrations of MD3 needed to kill mycobacteria, with no inherent toxic effect from drug scaffold after NO liberation. Resistance studies conducted via serial passage with representative isolates demonstrated no resistance to MD3. When administered directly into the lung via intra-tracheal administration in mice, MD3 demonstrated significant reduction in bacterial load in both acute and chronic models of lung infection. In summary, MD3 is a promising treatment for complex NTM pulmonary infection, specifically those caused by , and warrants further exploration as a therapeutic.

摘要

非结核分枝杆菌(NTM)可导致肺部基础疾病患者发生严重的呼吸道感染,且这些感染极难治疗。在本报告中,我们评估了一种一氧化氮(NO)释放前药[甲基三叠氮烯二醇(MD3)]针对一组 NTM 临床分离株的疗效,并将其作为急性和慢性 NTM 感染的治疗方法。我们探讨了其抑制分枝杆菌生长或杀灭分枝杆菌的效果,并评估了对原代人呼吸道上皮组织的影响。在需要杀死分枝杆菌的 MD3 浓度下暴露后,气道上皮组织仍保持存活,且 NO 释放后药物支架无固有毒性作用。通过对代表性分离株进行连续传代的耐药性研究表明,MD3 对其无耐药性。当通过气管内给药直接施用于肺部时,MD3 在急性和慢性肺部感染模型中均显著降低了细菌负荷。总之,MD3 是一种有前途的治疗复杂 NTM 肺部感染的方法,特别是由 引起的感染,值得进一步探索作为一种治疗方法。

相似文献

1
Nitric oxide-releasing prodrug for the treatment of complex infections.
Antimicrob Agents Chemother. 2024 Feb 7;68(2):e0132723. doi: 10.1128/aac.01327-23. Epub 2024 Jan 11.
2
Sudapyridine (WX-081) antibacterial activity against , , and and .
mSphere. 2024 Feb 28;9(2):e0051823. doi: 10.1128/msphere.00518-23. Epub 2024 Jan 19.
3
Activity of Bedaquiline and Delamanid against Nontuberculous Mycobacteria, Including Macrolide-Resistant Clinical Isolates.
Antimicrob Agents Chemother. 2019 Jul 25;63(8). doi: 10.1128/AAC.00665-19. Print 2019 Aug.
4
Susceptibility Testing of Omadacycline against Nontuberculous Mycobacteria.
Antimicrob Agents Chemother. 2021 Feb 17;65(3). doi: 10.1128/AAC.01947-20.
6
Auranofin Activity Exposes Thioredoxin Reductase as a Viable Drug Target in .
Antimicrob Agents Chemother. 2019 Aug 23;63(9). doi: 10.1128/AAC.00449-19. Print 2019 Sep.
7
A Novel Leucyl-tRNA Synthetase Inhibitor, MRX-6038, Expresses Anti-Mycobacterium abscessus Activity and .
Antimicrob Agents Chemother. 2022 Sep 20;66(9):e0060122. doi: 10.1128/aac.00601-22. Epub 2022 Aug 15.
8
Susceptibility Testing of Eravacycline against Nontuberculous Mycobacteria.
Antimicrob Agents Chemother. 2022 Sep 20;66(9):e0068922. doi: 10.1128/aac.00689-22. Epub 2022 Aug 9.
10
Specificity of Immunoglobulin Response to Nontuberculous Mycobacteria Infection in People with Cystic Fibrosis.
Microbiol Spectr. 2022 Aug 31;10(4):e0187422. doi: 10.1128/spectrum.01874-22. Epub 2022 Jul 6.

引用本文的文献

1
Activity of combinations of bactericidal and bacteriostatic compounds in -infected mice: an overview.
Front Microbiol. 2025 Aug 1;16:1616149. doi: 10.3389/fmicb.2025.1616149. eCollection 2025.
2
Toward better cures for lung disease.
Clin Microbiol Rev. 2024 Dec 10;37(4):e0008023. doi: 10.1128/cmr.00080-23. Epub 2024 Oct 3.
3
Impact of nitric oxide donors on capsule, biofilm and resistance profiles of Klebsiella pneumoniae.
Int J Antimicrob Agents. 2024 Nov;64(5):107339. doi: 10.1016/j.ijantimicag.2024.107339. Epub 2024 Sep 18.

本文引用的文献

2
Inhaled nitric oxide for adults with pulmonary non-tuberculous mycobacterial infection.
Respir Med. 2023 Jan;206:107069. doi: 10.1016/j.rmed.2022.107069. Epub 2022 Dec 2.
3
Microbiological profile, preclinical pharmacokinetics and efficacy of CRS0393, a novel antimycobacterial agent targeting MmpL3.
Tuberculosis (Edinb). 2023 Jan;138:102288. doi: 10.1016/j.tube.2022.102288. Epub 2022 Nov 29.
4
Impact on Macrolide Resistance of Genetic Diversity of Mycobacterium abscessus Species.
Microbiol Spectr. 2022 Dec 21;10(6):e0274922. doi: 10.1128/spectrum.02749-22. Epub 2022 Nov 23.
5
The physics of respiratory particle generation, fate in the air, and inhalation.
Nat Rev Phys. 2022;4(11):723-734. doi: 10.1038/s42254-022-00506-7. Epub 2022 Aug 31.
6
Therapeutic efficacy of antimalarial drugs targeting DosRS signaling in .
Sci Transl Med. 2022 Feb 23;14(633):eabj3860. doi: 10.1126/scitranslmed.abj3860.
8
Management of complex and pulmonary disease: therapeutic advances and emerging treatments.
Eur Respir Rev. 2022 Feb 9;31(163). doi: 10.1183/16000617.0212-2021. Print 2022 Mar 31.
9
Apramycin Overcomes the Inherent Lack of Antimicrobial Bactericidal Activity in Mycobacterium abscessus.
Antimicrob Agents Chemother. 2022 Feb 15;66(2):e0151021. doi: 10.1128/AAC.01510-21. Epub 2021 Dec 20.
10
New and simplified method for drug combination studies by checkerboard assay.
MethodsX. 2021 Oct 11;8:101543. doi: 10.1016/j.mex.2021.101543. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验