Suppr超能文献

将电子缓冲剂引入金属间铂合金以对抗表面极化,用于高性能燃料电池。

Introducing Electron Buffers into Intermetallic Pt Alloys against Surface Polarization for High-Performing Fuel Cells.

作者信息

Liu Xuan, Wang Yuhan, Liang Jiashun, Li Shenzhou, Zhang Siyang, Su Dong, Cai Zhao, Huang Yunhui, Elbaz Lior, Li Qing

机构信息

State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

J Am Chem Soc. 2024 Jan 24;146(3):2033-2042. doi: 10.1021/jacs.3c10681. Epub 2024 Jan 11.

Abstract

Surface polarization under harsh electrochemical environments usually puts catalysts in a thermodynamically unstable state, which strictly hampers the thermodynamic stability of Pt-based catalysts in high-performance fuel cells. Here, we report a strategy by introducing electron buffers (variable-valence metals, M = Ti, V, Cr, and Nb) into intermetallic Pt alloy nanoparticle catalysts to suppress the surface polarization of Pt shells using the structurally ordered L1-M-PtFe as a proof of concept. Operando X-ray absorption spectra analysis suggests that with the potential increase, electron buffers, especially Cr, could facilitate an electron flow to form a electron-enriched Pt shell and thus weaken the surface polarization and tensile Pt strain. The best-performing L1-Cr-PtFe/C catalyst delivers superb oxygen reduction reaction (ORR) activity (mass activity = 1.41/1.02 A mg at 0.9 V, rated power density = 14.0/9.2 W mg in H-air under a total Pt loading of 0.075/0.125 mg cm, respectively) and stability (20 mV voltage loss at 0.8 A cm after 60,000 cycles of accelerated durability test) in a fuel cell cathode, representing one of the best reported ORR catalysts. Density functional theory calculations reveal that the optimized surface strain by introducing Cr on L1-PtFe/C accounts for the enhanced ORR activity, and the durability enhancement stems from the charge transfer contribution of Cr to the Pt shells and the increased kinetic energy barrier for Pt dissolution/Fe diffusion.

摘要

在苛刻的电化学环境下,表面极化通常会使催化剂处于热力学不稳定状态,这严重阻碍了高性能燃料电池中铂基催化剂的热力学稳定性。在此,我们报道了一种策略,即通过将电子缓冲剂(可变价金属,M = 钛、钒、铬和铌)引入金属间铂合金纳米颗粒催化剂中,以使用结构有序的L1-M-PtFe作为概念验证来抑制铂壳的表面极化。原位X射线吸收光谱分析表明,随着电势升高,电子缓冲剂,尤其是铬,能够促进电子流动以形成富电子的铂壳,从而减弱表面极化和拉伸铂应变。性能最佳的L1-Cr-PtFe/C催化剂在燃料电池阴极中展现出卓越的氧还原反应(ORR)活性(在0.9 V下质量活性分别为1.41/1.02 A mg,在总铂负载量为0.075/0.125 mg cm的H-空气中额定功率密度分别为14.0/9.2 W mg)和稳定性(在60,000次加速耐久性测试后,在0.8 A cm下电压损失20 mV),是报道的最佳ORR催化剂之一。密度泛函理论计算表明,通过在L1-PtFe/C上引入铬优化表面应变是ORR活性增强的原因,而耐久性的提高源于铬对铂壳的电荷转移贡献以及铂溶解/铁扩散的动能势垒增加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验