Suppr超能文献

通过富单金属位点碳与铂之间的强耦合效应调控铂及铂钴金属间化合物燃料电池催化剂的催化性能和热稳定性。

Regulating Catalytic Properties and Thermal Stability of Pt and PtCo Intermetallic Fuel-Cell Catalysts via Strong Coupling Effects between Single-Metal Site-Rich Carbon and Pt.

作者信息

Zeng Yachao, Liang Jiashun, Li Chenzhao, Qiao Zhi, Li Boyang, Hwang Sooyeon, Kariuki Nancy N, Chang Chun-Wai, Wang Maoyu, Lyons Mason, Lee Sungsik, Feng Zhenxing, Wang Guofeng, Xie Jian, Cullen David A, Myers Deborah J, Wu Gang

机构信息

Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States.

Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States.

出版信息

J Am Chem Soc. 2023 Aug 16;145(32):17643-17655. doi: 10.1021/jacs.3c03345. Epub 2023 Aug 4.

Abstract

Developing low platinum-group-metal (PGM) catalysts for the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cells (PEMFCs) for heavy-duty vehicles (HDVs) remains a great challenge due to the highly demanded power density and long-term durability. This work explores the possible synergistic effect between single Mn site-rich carbon (Mn-NC) and Pt nanoparticles, aiming to improve intrinsic activity and stability of PGM catalysts. Density functional theory (DFT) calculations predicted a strong coupling effect between Pt and MnN sites in the carbon support, strengthening their interactions to immobilize Pt nanoparticles during the ORR. The adjacent MnN sites weaken oxygen adsorption at Pt to enhance intrinsic activity. Well-dispersed Pt (2.1 nm) and ordered L1-PtCo nanoparticles (3.3 nm) were retained on the Mn-NC support after indispensable high-temperature annealing up to 800 °C, suggesting enhanced thermal stability. Both PGM catalysts were thoroughly studied in membrane electrode assemblies (MEAs), showing compelling performance and durability. The Pt@Mn-NC catalyst achieved a mass activity (MA) of 0.63 A mg at 0.9 V and maintained 78% of its initial performance after a 30,000-cycle accelerated stress test (AST). The L1-PtCo@Mn-NC catalyst accomplished a much higher MA of 0.91 A mg and a current density of 1.63 A cm at 0.7 V under traditional light-duty vehicle (LDV) H-air conditions (150 kPa and 0.10 mg cm). Furthermore, the same catalyst in an HDV MEA (250 kPa and 0.20 mg cm) delivered 1.75 A cm at 0.7 V, only losing 18% performance after 90,000 cycles of the AST, demonstrating great potential to meet the DOE targets.

摘要

由于对功率密度和长期耐久性的高要求,为重型车辆(HDV)的质子交换膜燃料电池(PEMFC)开发用于氧还原反应(ORR)的低铂族金属(PGM)催化剂仍然是一个巨大的挑战。这项工作探索了富含单锰位点的碳(Mn-NC)与铂纳米颗粒之间可能的协同效应,旨在提高PGM催化剂的本征活性和稳定性。密度泛函理论(DFT)计算预测了碳载体中铂与MnN位点之间有很强的耦合效应,在ORR过程中增强了它们之间的相互作用以固定铂纳米颗粒。相邻的MnN位点减弱了铂上的氧吸附,从而提高本征活性。在高达800°C的必要高温退火后,分散良好的铂(2.1纳米)和有序的L1-PtCo纳米颗粒(3.3纳米)保留在Mn-NC载体上,表明热稳定性增强。两种PGM催化剂都在膜电极组件(MEA)中进行了深入研究,显示出令人信服的性能和耐久性。Pt@Mn-NC催化剂在0.9 V时的质量活性(MA)为0.63 A mg,在30000次循环加速应力测试(AST)后保持其初始性能的78%。在传统轻型车辆(LDV)H-空气条件(150 kPa和0.10 mg cm)下,L1-PtCo@Mn-NC催化剂在0.7 V时实现了更高的MA,为0.91 A mg,电流密度为1.63 A cm。此外,在HDV MEA(250 kPa和0.20 mg cm)中的相同催化剂在0.7 V时提供了1.75 A cm,在AST的90000次循环后仅损失18%的性能,显示出满足美国能源部目标的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验