Suppr超能文献

预测转移性嗜铬细胞瘤/副神经节瘤的新型替代工具。

Novel alternative tools for metastatic pheochromocytomas/paragangliomas prediction.

机构信息

Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.

Department of Urology Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.

出版信息

J Endocrinol Invest. 2024 May;47(5):1191-1203. doi: 10.1007/s40618-023-02239-5. Epub 2024 Jan 11.

Abstract

OBJECTIVE

The existing prediction models for metastasis in pheochromocytomas/paragangliomas (PPGLs) showed high heterogeneity in different centers. Therefore, this study aimed to establish new prediction models integrating multiple variables based on different algorithms.

DESIGN AND METHODS

Data of patients with PPGLs undergoing surgical resection at the Peking Union Medical College Hospital from 2007 to 2022 were collected retrospectively. Patients were randomly divided into the training and testing sets in a ratio of 7:3. Subsequently, decision trees, random forest, and logistic models were constructed for metastasis prediction with the training set and Cox models for metastasis-free survival (MFS) prediction with the total population. Additionally, Ki-67 index and tumor size were transformed into categorical variables for adjusting models. The testing set was used to assess the discrimination and calibration of models and the optimal models were visualized as nomograms. Clinical characteristics and MFS were compared between patients with and without risk factors.

RESULTS

A total of 198 patients with 59 cases of metastasis were included and classified into the training set (n = 138) and testing set (n = 60). Among all models, the logistic regression model showed the best discrimination for metastasis prediction with an AUC of 0.891 (95% CI, 0.793-0.990), integrating SDHB germline mutations [OR: 96.72 (95% CI, 16.61-940.79)], S-100 (-) [OR: 11.22 (95% CI, 3.04-58.51)], ATRX (-) [OR: 8.42 (95% CI, 2.73-29.24)] and Ki-67 ≥ 3% [OR: 7.98 (95% CI, 2.27-32.24)] evaluated through immunohistochemistry (IHC), and tumor size ≥ 5 cm [OR: 4.59 (95% CI, 1.34-19.13)]. The multivariate Cox model including the above risk factors also showed a high C-index of 0.860 (95% CI, 0.810-0.911) in predicting MFS after surgery. Furthermore, patients with the above risk factors showed a significantly poorer MFS (P ≤ 0.001).

CONCLUSIONS

Models established in this study provided alternative and reliable tools for clinicians to predict PPGLs patients' metastasis and MFS. More importantly, this study revealed for the first time that IHC of ATRX could act as an independent predictor of metastasis in PPGLs.

摘要

目的

现有的嗜铬细胞瘤/副神经节瘤(PPGLs)转移预测模型在不同中心表现出高度异质性。因此,本研究旨在基于不同算法建立新的整合多个变量的预测模型。

方法和设计

回顾性收集了 2007 年至 2022 年期间在北京协和医院接受手术切除的 PPGLs 患者的数据。患者按 7:3 的比例随机分为训练集和测试集。随后,使用训练集构建决策树、随机森林和逻辑模型进行转移预测,并使用总人群构建 Cox 模型进行无转移生存(MFS)预测。此外,Ki-67 指数和肿瘤大小被转化为分类变量以调整模型。使用测试集评估模型的区分度和校准度,并将最佳模型可视化作为列线图。比较有和无风险因素的患者之间的临床特征和 MFS。

结果

共纳入 198 例患者,其中 59 例发生转移,分为训练集(n=138)和测试集(n=60)。在所有模型中,逻辑回归模型在转移预测方面表现出最佳的区分度,AUC 为 0.891(95%CI,0.793-0.990),整合了 SDHB 种系突变[OR:96.72(95%CI,16.61-940.79)]、S-100(-)[OR:11.22(95%CI,3.04-58.51)]、ATRX(-)[OR:8.42(95%CI,2.73-29.24)]和通过免疫组织化学(IHC)评估的 Ki-67≥3%[OR:7.98(95%CI,2.27-32.24)],以及肿瘤大小≥5cm[OR:4.59(95%CI,1.34-19.13)]。包括上述风险因素的多变量 Cox 模型也显示出在预测手术后 MFS 方面具有较高的 C 指数 0.860(95%CI,0.810-0.911)。此外,具有上述风险因素的患者 MFS 显著较差(P≤0.001)。

结论

本研究建立的模型为临床医生预测 PPGLs 患者转移和 MFS 提供了替代和可靠的工具。更重要的是,本研究首次揭示了 ATRX 的 IHC 可以作为 PPGLs 转移的独立预测因子。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验